Abstract:
The gut microbiota has been implicated in the therapeutic effects of antidiabetics. However, it remains unclear whether antidiabetics directly influence gut microbiome-host interactions.
Oral peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, such as rosiglitazone, are potent insulin sensitizers used in the treatment of type 2 diabetes (T2D). PPAR-γ is abundantly expressed in the intestine, suggesting that PPAR-γ agonists may directly influence gut microbiome-host homeostasis.
This study aimed to characterize local gut microbiome and intestinal transcriptome responses in diabetic db/db mice following rosiglitazone treatment. Diabetic B6.BKS(D)-Leprdb/J (db/db) mice (8 weeks of age) received oral dosing once daily with vehicle (n = 12) or rosiglitazone (3 mg/kg, n = 12) for 8 weeks. Gut segments (duodenum, jejunum, ileum, caecum, and colon) were sampled for paired analysis of gut microbiota and host transcriptome signatures using full-length bacterial 16S rRNA sequencing and RNA sequencing (n = 5–6 per group).
Treatment with rosiglitazone improved glucose homeostasis without influencing local gut microbiome composition in db/db mice. In contrast, rosiglitazone promoted marked changes in ileal and colonic gene expression signatures associated with peroxisomal and mitochondrial lipid metabolism, carbohydrate utilization, and immune regulation.
Conclusion: Rosiglitazone treatment markedly affected transcriptional markers of intestinal lipid metabolism and immune regulation but had no effect on the gut microbiome in diabetic db/db mice.