Renal cell-type associated therapeutic effects of semaglutide in a mouse model of hypertension accelerated diabetic kidney disease

Authors

Maria Ougaard, Stine Thorhauge Bak, Louise Dalbøge, Henrik Hansen, Mette Østergaard, Thomas Secher, Ida Rune, Michael Christensen

Gubra, Hørsholm Kongevej 11B, Hørsholm, Denmark

Corresponding author Michael Christensen - MCH@gubra.dk

Background & Aim

Obesity, hyperglycemia and hypertension are critical risk factors for development of diabetic kidney disease (DKD). While emerging evidence suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular and renal outcomes in type 2 diabetes patients, their mode of action is presently unclear. Using paired bulk and single-nucleus RNA sequencing (RNAseq), we profiled renal transcriptome signatures of the long-acting GLP-1R agonist semaglutide alone and in combination with the ACE inhibitor lisinopril in a model of hypertensionaccelerated, advanced DKD facilitated by adenoassociated virus-mediated renin overexpression (ReninAAV) in uninephrectomized (UNx) female db/db mice.

Methods

Seven weeks after ReninAAV administration and six weeks post-UNx, ReninAAV UNx *db/db* mice were administered (q.d.) vehicle, semaglutide (30 nmol/kg, s.c.) or semaglutide (30 nmol/kg, s.c.) + lisinopril (30 mg/kg, p.o.) for 11 weeks. Endpoints included blood pressure, urine biochemistry, kidney histopathology as well as paired bulk and single-nucleus RNA seq. Cell type deconvolution was performed by referencing expression of treatment-affected genes across all major kidney cell types using single nuclei RNAseq.

www.gubra.dk

Study outline

Group

)	Animal	Gender	Number of animals	Treatment	Administration route	Dosing Frequency	Dosing volume	Dosing concentration
	ReninAAV Unx db/db	Female	15	Vehicle	SC	QD	5 ml/kg	-
	ReninAAV Unx db/db	Female	15	Semaglutide	SC	QD	5 ml/kg	30 nmol/kg
	ReninAAV Unx db/db	Female	14	Semaglutide + Lisinopril	SC + PO	QD	5 ml/kg	30 nmol/kg + 30 mg/kg

Reduced glomerulosclerosis

GS2 (<50%)

• GS3 (<75%)

Figure 5. Semaglutide improves glomerulosclerosis severity in *db/db* UNx-ReninAAV mice

(A) Automated detection of PAS-positive glomeruli and scoring of glomerulosclerosis by Gubra Histopathological Objective Scoring Technique (GHOST) deep learning-based image analysis. A scoring-based colour code was used to visualize sclerosis severity (GS0-GS4) in affected glomeruli. Left panel: Representative kidney image from a vehicle-treated *db/db* UNx-ReninAAV mice with visualization of scoring-based color code of individual glomeruli. Right panels: Normal glomerus (top, GS0) vs. global glomerulosclerosis (bottom, GS4). (B) Group-wise distribution (fraction %) of glomerulosclerosis scores. (C) Glomerulosclerosis index. ***p<0.001 vs *db/db* UNx-ReninAAV control mice (Dunnett's test one-factor linear model with interaction).

Renal cell-type associated transcriptome changes

Improved metabolic parameters

body weight and biochemical parameters in *db/db* UNx-**ReninAAV mice**

(A) Body weight (first dose day 0). (B) Fed blood glucose. (C) Terminal HbA1c. *p<0.05, **p<0.01 ***p<0.001 compared to vehicledosed *db/db* UNx-ReninAAV mice (Dunnett's test one-factor/twofactor linear model with interaction).

Figure 3: Semaglutide markedly improves hypertension and albuminuria in *db/db* UNx-ReninAAV mice (A) Mean arterial blood pressure measured in treatment week 1 and 10. (B) Albumin-to-creatinine ratio (terminal spot urine samples). ***p<0.001 vs vehicle-dosed db/db UNx-ReninAAV mice. ##p<0.01, ###p<0.001 vs. semaglutide (Dunnett's test two-factor linear model with interaction).

Conclusion

Semaglutide alone and in combination with lisinopril:

- Reduces body weight, blood glucose and HbA1c
- Markedly improves hypertension and albuminuria
- + Markedly reduces glomerulosclerosis
- + Improves renal transcriptome signatures

These findings support nephroprotective effects of semaglutide in DKD, highlighting the applicability of the db/db UNx-ReninAAV mouse model in preclinical drug development.

> Scan the QR code to see the poster online

