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ABSTRACT

Objective: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia
patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new
treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control. Here we
evaluated the effects of three TAAR1 agonists, including the clinical development candidate ulotaront, on body weight, metabolic parameters and
modulation of neurocircuits implicated in homeostatic and hedonic feeding.
Methods: Effects of TAAR1 agonists (ulotaront, RO5166017 and/or RO5263397) on body weight, food intake and/or metabolic parameters were
investigated in rats fed a high-fat diet (HFD) and in a mouse model of diet-induced obesity (DIO). Body weight effects were also determined in a rat
and mouse model of olanzapine-, and corticosterone-induced body weight gain, respectively. Glucose tolerance was assessed in lean and
diabetic db/db mice and fasting plasma glucose and insulin examined in DIO mice. Effects on gastric emptying were evaluated in lean mice and
rats. Drug-induced neurocircuit modulation was evaluated in mice using whole-brain imaging of c-fos protein expression.
Results: TAAR1 agonists improved oral glucose tolerance by inhibiting gastric emptying. Sub-chronic administration of ulotaront in rats fed a
HFD produced a dose-dependent reduction in body weight, food intake and liver triglycerides compared to vehicle controls. In addition, a more
rapid reversal of olanzapine-induced weight gain and food intake was observed in HFD rats switched to ulotaront or RO5263397 treatment
compared to those switched to vehicle. Chronic ulotaront administration also reduced body weight and improved glycemic control in DIO mice,
and normalized corticosterone-induced body weight gain in mice. TAAR1 activation increased neuronal activity in discrete homeostatic and
hedonic feeding centers located in the dorsal vagal complex and hypothalamus with concurrent activation of several limbic structures.
Conclusion: The current data demonstrate that TAAR1 agonists, as a class, not only lack APD-induced metabolic liabilities but can reduce body
weight and improve glycemic control in rodent models. The underlying mechanisms likely include TAAR1-mediated peripheral effects on glucose
homeostasis and gastric emptying as well as central regulation of energy balance and food intake.

� 2024 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Over the past 15 years trace amine-associated receptor 1 (TAAR1) has
attracted considerable interest as a target for neuropsychiatric disor-
ders [1e4]. The development of selective small molecule agonists has
further reinforced the therapeutic potential of this G-protein-coupled
receptor (GPCR), most prominently for the treatment of schizophrenia.
TAAR1 agonists have shown robust antipsychotic-like effects in a wide
range of animal models, with two drug-candidates (ulotaront and
ralmitaront) advancing into Phase 2/3 clinical trials [1,4,5]. Promising
efficacy and safety results in patients with schizophrenia were reported
for ulotaront, a TAAR1 agonist with additional 5-HT1A agonist activity,
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currently in Phase 3 clinical development [1,5e9]. Although the un-
derlying mechanisms are not fully understood, preclinical evidence
suggests that TAAR1-mediated modulation of monoaminergic neuro-
transmission, particularly presynaptic dopaminergic tone, is associated
with the beneficial, centrally-mediated effects of agonist molecules
[1,2,4].
TAAR1, which was discovered in 2001 [10,11], is a member of the
rhodopsin-like, trace amine receptor family and activated by several
endogenous trace amines including p-tyramine, b-phenylethylamine,
octopamine and tryptamine [2]. TAAR1 is broadly expressed
throughout the brain, although at low levels [10,12e15]. In the pe-
riphery, its expression has been reported in the stomach, the
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duodenum and pancreas, including b cells [13,16,17]. Supported by
its central and peripheral expression pattern, TAAR1 has recently been
implicated in the regulation of metabolic function and food reward
behavior [16e19]. Selective TAAR1 agonists have been shown to
decrease body weight in lean rodents, prevent olanzapine-induced
weight gain in rats, reduce food intake and excess body weight in
diet-induced obese (DIO) mice and attenuate binge-like eating in rats
[16,17,20,21]. Additional work in DIO and db/db mice (a mouse model
of type 2 diabetes) also reported improved glucose tolerance and in-
sulin sensitivity, as well as reduced plasma and liver triglyceride levels
[16]. Genetic analysis in patients with psychiatric and metabolic dis-
orders has identified several rare variants in TAAR genes, including
TAAR1 [18]. Some of the variants show altered receptor function
in vitro [22], warranting further assessment of naturally occurring
TAAR1 variants in humans. The described genetic and preclinical
findings are of significant relevance for potential TAAR1 agonist
therapeutics since obesity, hyperglycemia, insulin resistance and
dyslipidemia constitute major side effects of current antipsychotic drug
(APD) classes [23e26]. Among these, the second-generation APDs
olanzapine and clozapine have the greatest propensity for inducing
metabolic dysregulation although similar liabilities are also reported for
some first-generation agents including haloperidol [23]. While sub-
stantial evidence has associated dopamine D2 and serotonin 5-HT2A
receptor blockade with the symptomatic benefit of APDs, the under-
lying targets linked to the metabolic dysregulation are far less un-
derstood and may include activity at D2, 5-HT2C, H1 and M3 receptors
[27,28]. In addition, there is evidence that psychosis is associated with
metabolic alterations independent of common risk factors such as
antipsychotic medication and lifestyle [29,30].The need for novel
treatments that lack APD class-specific metabolic side-effects is
therefore apparent.
Here, we use a combination of approaches to evaluate the effects of
three TAAR1 agonists on metabolic parameters in rodent models of
diabetes, obesity, and iatrogenic weight gain. We corroborate previous
results showing beneficial effects of TAAR1 activation on glycemic
control and body weight and demonstrate that this is a class effect
seen across structurally distinct TAAR1 agonist compounds. Further-
more, we provide novel mechanistic insight into TAAR1-mediated
metabolic regulation by showing that TAAR1 agonists modulate neu-
ral activity of homeostatic and hedonic neurocircuits governing energy
balance and feeding. The current data further supports evaluation of
TAAR1 agonists for the treatment of metabolic disorders including
metabolic dysregulation in patients with schizophrenia.

2. MATERIALS AND METHODS

2.1. Animals
Mice used for the gastric emptying (acetaminophen absorption test)
and c-fos imaging studies were treated in accordance with the Na-
tional Danish legislation BEK 2028 of 14/12/2020, which is based on
the Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used for
scientific purposes. Evaluation of compound effects in the chronic
corticosterone model was approved by the Institutional Animal Care
and Use Committee (IACUC) at the New York State Psychiatric Institute
(NYSPI). For all other studies, animal procedures were performed in
accordance with UK regulations, as detailed in the Animals (Scientific
Procedures) Act 1986. Unless otherwise specified, animals were
housed under a 12-h:12-h light/dark cycle in a temperature and
humidity-controlled environment and with access to standard chow
diet and tap water ad libitum.
2 MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier G
2.2. Test articles
Ulotaront, RO5166017 and RO5263397 were synthesized at Sumi-
tomo Pharma America. Glucagon-like peptide 1 receptor (GLP-1R)
agonists exendin-4 and liraglutide were purchased from Tocris and
semaglutide from Nomeco. Acetaminophen, phenol red and cortico-
sterone were obtained from Sigma-Aldrich and the atypical anti-
psychotic olanzapine from Glentham Life Science. Ulotaront was
dissolved in sterile water or saline for oral and intraperitoneal
administration, respectively. Ulotaront doses are expressed as the
free base and were corrected for the salt content. RO5166017 and
RO5263397 (both free base) were dissolved in 0.3%Tween80 in
sterile water or in 0.3% Tween 80 in saline for oral and intraperi-
toneal administration, respectively. Dosing preparations for all other
test articles are specified throughout the text.

2.3. Glucose tolerance tests
The oral glucose tolerance test (oGTT) was conducted in lean, male
C57BL/6J (10 weeks; Charles River Laboratories (CRL), Margate, UK)
and male db/db mice (6e7 weeks; CRL, Calco, Italy). Lean, male CD1
mice (10 weeks; CRL, Margate, UK) were used for the intravenous (iv)
GTT. Mice were singly housed and fasted 16 h prior to the glucose
tolerance test. During the oGTT, mice were dosed with ulotaront (0.3,
1, 3 or 10 mg/kg, po) or vehicle 30 min prior to oral glucose admin-
istration (2.0 g/kg). Exendin-4 (dissolved in 1� phosphate buffered
saline (PBS)) was included as a positive control and administered to
lean C57BL/6J (1 mg/kg, ip) or db/db (300 mg/kg, ip) mice 10 min prior
to the glucose load. Blood samples were collected at baseline (prior to
test article dosing), 3 min before glucose administration, and at 15, 30,
60 and 120 min post-glucose administration. During the ivGTT, mice
were dosed with ulotaront (0.3, 1, 3 or 10 mg/kg, po) or vehicle 30 min
prior to intravenous glucose administration (1 g/kg). Exendin-4 (40 mg/
kg dissolved in 1� PBS) was dosed iv concomitantly with the glucose.
Blood samples were collected at baseline, 3 min before glucose
administration, and at 5, 10, 30 and 60 min post-glucose adminis-
tration. Plasma was separated by centrifugation and subsequently
analyzed for glucose (glucose hexokinase reagent, Thermo Fisher) and
insulin (insulin ELISA, Alpco) levels.

2.4. Assessment of gastric emptying

2.4.1. Acetaminophen absorption test (ATT)
Lean, male C57BL/6JRj mice (8e9 weeks, JanVier, Le Genest-Saint-
Isle, France) were semi-fasted (w50% of prior food intake) over-
night and dosed orally with ulotaront (0.3, 1, 3 or 10 mg/kg),
RO5166017 (0.1, 0.3, 1 mg/kg), RO5263397 (0.01, 0.1, 1 mg/kg) or
the corresponding vehicle 30 min prior to acetaminophen adminis-
tration (160 mg/kg, po suspended in 1.5% (w/v) HPMC/1.5% (w/v)
HPCD in water). Semaglutide (10 nmol/kg, s.c. dissolved in 1� PBS
with 0.1% BSA) was included as a positive control and administered
30 min prior to acetaminophen. Blood samples were collected at
baseline (prior to test article dosing) and at 10, 30, 60 and 120 min
post-acetaminophen administration. Serum was separated by
centrifugation and acetaminophen concentrations determined using a
commercially available kit (TDM Acetaminophen Gen.2, Roche Di-
agnostics) followed by quantification in the Cobas c 501 auto-
analyzer. The ACET2 calibrator (Roche Diagnostics) was used to
generate the standard curve.

2.4.2. Phenol red test
Lean, male C57BL/6J mice (8e9 weeks; CRL, Margate, UK) or
Sprague Dawley rats (200e250 g CRL, Margate, UK) were food and
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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water were restrictedw22 and 2 h prior to phenol red administration,
respectively. Animals were dosed orally with ulotaront (0.3, 1, 3 or
10 mg/kg), RO5166017 (mice, 0.3 mg/kg; rats, 0.3, 1, 3 and 10 mg/
kg), RO5263397 (mice, 0.1 mg/kg; rats, 1, 3, 10 and 30 mg/kg) or the
corresponding vehicle 30 min prior to phenol red (0.05% w/v in 1.5%
aqueous HPMC, po) administration. Thirty minutes later, animals were
terminated, and the remaining phenol red recovered from the stomach.
The amount of phenol red was determined from the absorbance of the
sample assessed at 560 nm by spectrophotometer (SpectraMax iD5
Molecular Devices) against distilled water. A separate group of vehicle-
treated animals (of the same strain and age or weight), terminated
immediately after dosing with phenol red, served as standard controls
(i.e., maximal 100% absorbance). The percent gastric emptying
30 min post-phenol red dosing for each mouse was calculated as:
[1 � (individual absorbance of the sample/mean absorbance of
standard controls)] � 100.

2.5. Studies in rats fed a high-fat diet (HFD)
Three separate studies were conducted in female Sprague Dawley (SD)
rats obtained from CRL (Margate, UK). Free access to HFD (VRF1 plus
20% lard; Special Diet Service) was initiated two weeks prior to test
article administration. Rats were maintained on a 8-h:16-h reversed
lightedark cycle.
In the first study, rats (200e300 g at the start of HFD exposure) were
dosed once daily with ulotaront (1, 3 or 10 mg/kg, po) or vehicle for 14
consecutive days. Olanzapine (3 mg/kg, po suspended in 1% methyl
cellulose; qd � 14 days) was included as a positive control. Body
weights, food and water intake were measured daily. On day 15,
following a 16 h fast, liver tissue was collected 4 h after test article
administration for analysis of liver triglycerides using a Cobas c111
analyzer (Roche Diagnostics). Carcass composition (i.e., fat content) of
each animal was determined using the FoodScan NIR (near infra-red)
meat analyzer (Foss). Frozen rat carcasses were placed in liquid ni-
trogen and then individually milled using a Retsch SM2000 Laboratory
cutting mill (Cristison Scientific Equipment Ltd) precooled using solid
carbon dioxide. Subsequently, a portion of the milled sample (w50 g)
was placed in the FoodScan analyser and scanned using the default
settings.
In the second study, female SD rats (185e245 g at the start of HFD
exposure) were initially dosed once daily with olanzapine (3 mg/kg, po)
or vehicle for 7 consecutive days. On day 8, olanzapine-treated rats
were switched to ulotaront (0.3, 1 or 3 mg/kg, po, qd) or vehicle
treatment for an additional 7 days while one group continued to receive
olanzapine. Rats dosed with vehicle during the first 7 days continued to
receive vehicle treatment. Body weights, food and water intake were
measured daily. On day 15, following a 16 h fast, animals were
terminated, and carcasses frozen for subsequent carcass composition
analyses.
RO5263397 (1 or 10 mg/kg, po, qd) was evaluated in female SD rats
(200e300 g at the start of HFD exposure) under the same testing
conditions as in study two, except that body fat analysis was not
conducted.

2.6. Evaluation in chronic corticosterone-treated mice
Male C57BL/6J mice (8 weeks, Jax, Bar Harbor, MA, USA) were initially
administered corticosterone (35 mg/ml) or vehicle (0.45% b-cyclo-
dextrin) ad libitum in drinking water for 28 days. Subsequently,
corticosterone-treated mice were orally dosed with ulotaront (1, 5 or
10 mg/kg) or vehicle, once daily for 21 days. Animals continued to
receive corticosterone in the drinking water throughout the drug
treatment period. Body weights were determined weekly.
MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier GmbH. This is an
www.molecularmetabolism.com
2.7. Evaluation in DIO mice
Obesity was induced in male, C57BL/6J mice (6e7 weeks; CRL,
Margate, UK) by providing animals with ad libitum access to a high fat
diet (D12451; 20% protein, 35% carbohydrate and 45% fat; Research
Diets) starting 16 weeks prior to study start. Animals were maintained
on a 8-h:16-h reversed lightedark cycle. Mice were dosed once daily
with ulotaront (0.3, 1, 3 or 10 mg/kg, po) or vehicle for 35 consecutive
days. Liraglutide (0.2 mg/kg, s.c., qd), was included as a positive
control. Body weight, food and water intake were assessed daily.
Fasting plasma glucose and insulin were measured on day 15
following a 4 h fast. Plasma glucose levels were determined with the
Infinity Glucose Hexokinase reagent (Thermo Scientific). Insulin was
measured using a mouse insulin ELISA (Alpco). HOMA-IR was calcu-
lated as follows: HOMA-IR ¼ fasting glucose (mM) � fasting insulin
(mU/ml)/22.5.

2.8. Whole brain c-fos imaging
Male C57BL/6JRj mice (8 weeks; JanVier, Le Genest-Saint-Isle,
France) received a single administration of ulotaront (3 mg/kg, ip),
RO5263397 (0.3 mg/kg, ip) or the respective vehicle 105 min prior to
the transcranial perfusion (heparinized PBS and 10% neutral buffered
formalin (NBF)). Subsequently, the brains were dissected and postfixed
overnight in 10% NBF at room temperature. The iDISCOþ (immuno-
labeling-enabled three-dimensional imaging of solvent-cleared organs)
[31,32] protocol was used for whole brain immunolabelling as previ-
ously described [33,34]. For visualization of c-fos expression, rabbit
anti-c-fos antibody (1:5000, Cell Signaling Technology) was used
followed by incubation with the secondary donkey anti rabbit Cy-5
antibody (1:1000, Jackson ImmunoResearch). The optically trans-
parent brain samples were imaged using LaVision ultramicroscope II
(Miltenyi Biotec). Image processing, registration and cell detection was
performed according to the method of Perens and colleagues [33]. In
addition to voxel-level analysis, a total of 839 brain regions of interest
(ROIs) were analyzed.

2.9. Statistical analysis
Statistical analysis was performed using Graphpad Prism v8.0. Data
are presented as means � SEM or þ SEM. p � 0.05 was considered
statistically significant. Time-course data were analyzed by mixed-
effects model or two-way repeated measures ANOVA followed by
appropriate post-hoc comparisons (i.e., Dunnett’s or Tukey’s post hoc
test). Individual group comparisons were performed with an unpaired,
two-tailed t-test. Multiple group comparisons were conducted with
one-way ANOVA followed by Dunnett’s or Tukey’s post-hoc tests, as
appropriate. ROI-based and voxel-wise statistical analysis were per-
formed to compare the effect of treatment versus vehicle on c-fos
expression as previously described [33,34]. For the ROI analysis, a
Negative Binomial Generalized Linear Model (GLM) was fitted to the
cell count data, and a Dunnett’s test was performed for multiple group
comparisons within each region. Voxel-wise statistics are provided as
Z-scores based on c-fos-positive density maps. The density maps
were generated for each sample by calculating the average number of
c-fos-positive cells within a radius of 100 mm at each voxel position.
Hereafter, Welch’s t-test was applied, at each voxel-position, and the
resulting p-value was converted to a Z-score.

3. RESULTS

3.1. TAAR1 agonist ulotaront improves glucose tolerance
To assess the effects of acute ulotaront administration on glycemic
control, we initially conducted an oral glucose tolerance test (oGTT) in
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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lean C57BL/6J and db/db mice. Db/db mice, which are considered a
model of type 2 diabetes, are homozygous for the spontaneous db
mutation in the leptin receptor gene (Leprdb) and develop chronic
hyperglycemia, insulin resistance and obesity [35]. In both C57BL/6J
and db/db mice, single oral administration of ulotaront (0.3, 1, 3 or
10 mg/kg) dose-dependently and significantly reduced plasma glucose
and insulin excursion (Figure 1AeD). The effect was most prominent
during the initial 60 min post-glucose administration, as shown by the
area under the curve (AUC0e60 min). At the end of the test (120 min post
glucose administration), plasma glucose was significantly elevated
compared to vehicle treated controls, particularly in mice that received
the highest doses of ulotaront (3 and 10 mg/kg po). This type of oGTT
profile suggests that the glucose-lowering effect of acute ulotaront
treatment is insulin-independent and may be mediated through effects
on gastric emptying. To further examine this, we conducted an ivGTT in
lean CD1 mice. Intravenous administration of glucose controls for
Figure 1: Ulotaront improves oral glucose tolerance in lean and db/db mice. (A) Sing
(A) and insulin (B) excursion during the first 60 min (AUC0e60 min) of the oGTT in lean male
also seen in db/db mice. No significant effect on glucose (E) and insulin (F) levels were not
kg, po or 1 g/kg, iv) was administered immediately after sample collection at timepoint 0. E
are means þ SEM. Mixed-effects analysis (time-course data) or one-way ANOVA (AUC
***p < 0.001 vs vehicle (Veh); N ¼ 9e10/group.

4 MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier G
compound effects on gastric emptying and incretin hormones that are
released upon oral glucose administration. In this case, single oral
administration of ulotaront (0.3, 1, 3 or 10 mg/kg) had no effect on
either glucose or insulin excursion in the ivGTT (Figure 1EeF).
Importantly, we observed that the selective TAAR1 agonist RO5166017
(0.1, 0.3, 1 or 3 mg/kg, po) produced very similar effects to ulotaront in
both the oGTT and ivGTT assays (Supplementary Figure 1). As ex-
pected, exendin-4 significantly reduced plasma glucose compared to
vehicle-treated controls across all studies. In line with the profile of
GLP-1R agonists, this reduction was insulin-dependent as shown by
the significant increase in plasma insulin at the 15 min (oGTT) and
5 min (ivGTT) time points across most studies (Figure 1 and
Supplementary Figure 1). The only exception was the oGTT study
conducted with RO5166017, where neither RO5166017 nor exendin-4
significantly altered insulin excursion, likely due to the high inter-
animal variability (Supplementary Figure 1B). Overall, the results
le oral administration of ulotaront significantly and dose-dependently decreased glucose
mice. Similar effects on glucose (C) and insulin (D) time course and AUC0e60 min were

ed during an ivGTT in lean mice. B ¼ baseline, prior to compound dosing. Glucose (2 g/
x-4 ¼ exendin-4 (1 mg/kg, ip (AeB), 300 mg/kg, ip (CeD) or 40 mg/kg, iv (EeF)). Data
data) followed by Dunnett’s multiple comparisons test; *p < 0.05, **p < 0.01,

mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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demonstrate that TAAR1 agonists improve oral glucose tolerance in
mice.

3.2. TAAR1 agonists delay gastric emptying
To further elucidate the mechanism contributing to the glucose-
lowering effect of ulotaront in the oGTT, we examined its effect on
gastric emptying in lean, C57BL/6J mice. The study was conducted
using the acetaminophen absorption test, a clinically established
method for the assessment of gastric emptying [36]. Single oral
administration of ulotaront dose-dependently and significantly reduced
serum acetaminophen concentrations indicating delayed gastric
emptying at all dose levels tested (Figure 2A). Delayed gastric
emptying was also observed in mice treated with the selective TAAR1
agonists RO5166017 and RO5263397 (Figure 2BeC). The tested
doses of RO5166017 and RO5263397 are consisted with those re-
ported in previous in vivo pharmacology studies [17,37]. In line with
reported effects of GLP-1R agonists [38e40], semaglutide delayed
gastric emptying compared to vehicle-treated controls across all
studies. Lastly, we also evaluated gastric emptying using the phenol
red test, a frequently utilized method in rodents that determines the
recovery of phenol red directly from the stomach [41]. Consistent with
prior results, oral administration of ulotaront, RO5166017 and
RO5263397 significantly delayed gastric emptying in mice
(Supplementary Figure 2). All three compounds also delayed gastric
emptying in rats (Supplementary Figure 2). Collectively, the results
demonstrate that TAAR1 agonists delay gastric emptying in rodents,
supporting the hypothesis that this mechanism contributes to the
glucose-lowering effects of ulotaront and RO5166017 in the mouse
oGTT.

3.3. Ulotaront reduces body weight and food intake in rats fed a
high-fat-diet
We next investigated the effects of sub-chronic (once daily for 14 days)
ulotaront treatment on body weight, food and water intake in female
Sprague Dawley rats fed a HFD. The atypical antipsychotic, olanzapine,
Figure 2: TAAR1 agonists delay gastric emptying in mice. Acetaminophen time-cours
oral administration of Ulotaront (A), RO5166017 (B) or RO5263397 (C) indicating a delay
Mixed-effects analysis (time-course data) or one-way ANOVA (AUC data) followed by Dunne
N ¼ 7e11/group.
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which induces prominent weight gain in rodents and humans [42], was
included as a positive control. Ulotaront dose-dependently and
significantly (1, 3 and 10 mg/kg/day, po) reduced cumulative body
weight gain compared to vehicle treated HFD controls (Figure 3AeB).
The most prominent weight decrease was observed during the initial
3e4 days of dosing after which body weight stabilized but did not
increase as in vehicle-treated rats. The decrease in body weight gain
was also associated with significant fat loss, determined at study end
(Figure 3D), and reduced average daily food intake (Figure 3C) while
water consumption was not altered (Supplementary Figure 3A). In
addition, liver triglycerides measured at study end were dose-
dependently and significantly reduced by ulotaront (Figure 3E). In
line with previous results [43,44], treatment with olanzapine (3 mg/kg/
day, po) resulted in a significant increase in body weight gain and
average daily food intake. No statistically significant effects of olan-
zapine treatment were seen on average daily water intake
(Supplementary Figure 3A), terminal fat content (Figure 3D) or liver
triglyceride levels (Figure 3E) in this study.

3.4. Switch to ulotaront or RO5263397 reverses olanzapine-
induced body weight gain and food intake in rats fed a high-fat-diet
Previous studies have reported that co-administration of olanzapine
with RO5263397 or ulotaront attenuates olanzapine-induced weight
gain in rodents [17,21]. In order to recapitulate a more clinically relevant
scenario, where switching of APDs is common, we examined whether
ulotaront can reverse the metabolic effects produced by prior olanza-
pine treatment in female rats maintained on HFD. Except for the vehicle-
treated control group, all rats were initially dosed with olanzapine (3 mg/
kg, po) once daily for 7 consecutive days. On day 8, rats either continued
on olanzapine treatment or were switched to treatment with vehicle or
ulotaront (0.3, 1 or 3 mg/kg, po, qd) for a further 7 days. Compared to
vehicle-treated controls, a significant increase in body weight gain was
observed following 7 days of olanzapine treatment (Figure 4A). Rats that
were switched to vehicle treatment showed a significant reduction in
cumulative body weight gain (Figure 4AeB) and average daily food
e and AUC0e120 min was significantly and dose-dependently decreased following single
in gastric emptying. Sema ¼ semaglutide (10 nmol/kg, s.c.). Data are means þ SEM.
tt’s multiple comparisons test; *p < 0.05, **p < 0.01, ***p < 0.001 vs vehicle (Veh);
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Figure 3: Ulotaront reduces body weight and improves metabolic parameters in rats on high fat diet. Once, daily administration of ulotaront (po) resulted in a dose-
dependent reduction in (A) cumulative body weight gain, (B) percent body-weight change, (C) average daily food intake, (D) fat content and (E) liver triglyceride levels
compared to vehicle controls. Olz ¼ olanzapine (3 mg/kg, po, qd). Data are means � or þ SEM. 2-way repeated measures ANOVA (A) or one-way ANOVA (BeE) followed by
Dunnett’s post-hoc test; *p < 0.05, **p < 0.01, ***p < 0.001 vs vehicle (Veh); N ¼ 12/group.
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intake (Figure 4C) throughout the remaining study period (day 8e14)
compared to animals that continued to receive olanzapine. Switching to
ulotaront also significantly decreased subsequent body weight gain and
food intake at all doses compared to the olanzapine-treated group.
Notably, the reduction in body weight and food intake was significantly
greater in rats switched to ulotaront (1 and 3 mg/kg, po) compared to
those switched to vehicle treatment. In this study a significant increase
in average daily water intake was observed in rats continuing olanza-
pine treatment on days 8e13, which was not observed in rats switched
to vehicle or ulotaront (Supplementary Figure 3B). In addition, switching
to ulotaront was associated with a significant reduction in fat content at
all doses compared to olanzapine-treated rats (Supplementary
Figure 4C). Next, we evaluated the effects of RO5263397 under
similar testing conditions. Consistent with the ulotaront findings,
switching from olanzapine to RO5263397 (1 or 10 mg/kg, po, qd)
reduced body weight gain (Figure 4DeE) and average daily food intake
(Figure 4F) and these effects were significantly greater than switching to
vehicle at the highest dose.

3.5. Ulotaront reverses corticosterone-induced weight gain in mice
Prolonged exposure to elevated glucocorticoid levels (i.e., cortisol)
caused by stress, pituitary tumors or administration of steroid drugs
has been associated with metabolic dysregulation including weight
gain and obesity [45,46]. In rodents, chronic exposure to corticoste-
rone (Cort) mimics some of the metabolic alterations and has been
used to model stress-induced behavioral changes commonly
6 MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier G
associated with depression such as enhanced anxiety-related behavior
[47,48]. Therefore, we evaluated whether ulotaront would also have an
impact on Cort-induced weight gain in male C57BL/6J mice. Chronic
administration of Cort (35 mg/ml) produced a significant increase in
body weight that was apparent from day 21 and was relatively stable
from day 28 onwards compared to vehicle controls (Figure 4G). Once,
daily administration of ulotaront (1, 5 or 10 mg/kg, po), beginning on
day 28, significantly and dose-dependently reduced the Cort-induced
body weight gain over the treatment period (Figure 4GeH). By day
49, the body weight of mice receiving ulotaront at 5 or 10 mg/kg was
similar to that seen in vehicle-treated mice that were not exposed to
Cort in the drinking water (Figure 4G).

3.6. Ulotaront reduces body weight and improves glycemic control
in DIO mice
Given the consistent improvement in body weight and metabolic pa-
rameters seen in the above studies, we further examined ulotaront in
the mouse diet-induced obesity (DIO) model. In contrast to the rat HFD
model described earlier, DIO mice are weight-stable and exhibit
increased adiposity, insulin resistance and hyperglycemia following
long term access to HFD. Daily oral administration of ulotaront for 35
days dose-dependently and significantly reduced body weight gain
(Figure 5A) and overall percent body weight change (Figure 5B) at 3
and 10 mg/kg (�5% and�7% difference from vehicle respectively). In
contrast to the previous results in rats, this reduction in body weight
was associated with a dose-dependent trend to increase average daily
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com
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Figure 4: TAAR1 agonism reverses olanzapine and corticosterone-induced body weight gain. Once, daily olanzapine treatment (3 mg/kg, po) for 8 days in female rats
maintained on a HFD significantly increased body weight gain by day 8 compared to vehicle (A,D). Rats switched from olanzapine to ulotaront treatment (0.3, 1 or 3mg/kg, po, qd) on day
8 showed a significantly greater reduction in body weight (A, B) and average daily food intake (C) compared to rats that were switched to vehicle. In the same model, switch to
RO5263397 (1 or 10 mg/kg, po, qd) also produced a greater reduction in body weight (D,E) and food intake (F) compared to a switch to vehicle. Two-way repeated measures ANOVA
(A,D) or one-way ANOVA (B,C,E,F) followed by Tukey’s post-hoc test; *p < 0.05, **p < 0.01, ***p < 0.001 vs Olz/Veh switch; þp < 0.05, þþp < 0.01 þþþp < 0.001 vs Olz.
Comparisons between the vehicle (D1-14) and olanzapine (D1-14) group were analyzed separately using a two-tailed t-test; #p < 0.05, ###p < 0.001 vs Veh. N ¼ 12e13/group.
Single, daily ulotaront administration (1, 5 and 10 mg/kg, po) dose-dependently decreased body weight (G) and percent body weight gain (H) in male mice treated with chronic
corticosterone (35 mg/ml in drinking water). Data are means � or þ SEM. Two-way repeated measures ANOVA (G) or one-way ANOVA (H) followed by Dunnett’s post-hoc test;
*p < 0.05, **p < 0.01, ***p < 0.001 vs Cort/Veh; #p < 0.05 vs Veh/Veh. N ¼ 8e12/group.
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Figure 5: Ulotaront reduces body weight and improves glycemic control in a mouse model of diet-induced obesity. Once, daily ulotaront administration (0.3, 1, 3 and
10 mg/kg, po) dose-dependently reduced cumulative (A) and percent (B) body weight gain compared to vehicle treatment. Daily average food intake was not altered by ulotaront
(C), while water intake was dose-dependently increased, approaching significance at the highest dose (D). Ulotaront dose-dependently reduced elevated fasting glucose and insulin
levels and improved insulin resistance determined by HOMA-IR. Lir ¼ Liraglutide (0.2 mg/kg, sc, qd). Data are means � or þ SEM. Two-way repeated measures ANOVA (A) or
one-way ANOVA (BeG) followed by Dunnett’s post-hoc test; *p < 0.05, **p < 0.01, ***p < 0.001 vs vehicle (Veh); N ¼ 12/group.
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water intake, while prominent effects were not seen on food intake
when assessed over the entire study duration (Figure 5CeD). However,
a significant decrease in food intake was observed during the first 2
days of dosing for the 3 and 10 mg/kg ulotaront groups
(Supplementary Figure 4A). On day 15, ulotaront treatment signifi-
cantly reduced fasting plasma glucose (1, 3 and 10 mg/kg) and insulin
(10 mg/kg) levels (Figure 5EeF), suggesting improved insulin sensi-
tivity. This was further supported by a dose-dependent reduction in
HOMA-IR (Figure 5G). In line with reported findings [49e51], the GLP-
1R agonist liraglutide produced significant and robust reductions in
body weight (�17% difference vs vehicle), food intake, fasting plasma
glucose and insulin levels. These results show that chronic treatment
with ulotaront lowers body weight and improves glycemic control in the
mouse DIO model.

3.7. Ulotaront and RO5263397 modulate neuronal activity in
circuits implicated in energy balance and food intake
It is well recognized that the CNS plays a critical role in regulating
energy balance, feeding behavior and body weight homeostasis
[52,53]. The majority of centrally acting anti-obesity drugs exert
appetite suppressing effects or affect food reward sensitivity [54,55].
Given the neuromodulatory actions of TAAR1, we also evaluated ulo-
taront (3 mg/kg) and RO5263397 (0.3 mg/kg) for effects on whole-
brain c-fos protein expression after acute intraperitoneal administra-
tion. The expression of the immediate early gene c-fos serves a marker
of neural activity and was analyzed at single-cell resolution using c-fos
immunohistochemistry and automated quantitative 3D imaging in male
8 MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier G
C57BL/6J mice. Since c-fos signals can be spatially restricted to parts
of any given brain area, or span multiple areas, we conducted region-,
and voxel-based statistical analysis. The region-based analysis
comprised 839 atlas-defined mouse brain areas. Ulotaront and
RO5263397 induced a strikingly similar c-fos profile, while some
notable differences were also observed (Figure 6AeC). Both com-
pounds modulated neural activity in key brain areas involved in energy
homeostasis and hedonic feeding [52,56,57] (Figure 6D and
Supplementary Figure 5). These included hypothalamic feeding cen-
ters, the extended amygdala and several appetite-regulating brainstem
nuclei. The latter included the parabrachial nucleus (PB), nucleus of the
solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMX) and
area postrema (AP). Ulotaront and RO5263397 also robustly activated
the extended amygdala complex including the central amygdala nu-
cleus (CEA) and bed nucleus of the stria terminalis (BST). In addition,
increased c-fos expression in response to ulotaront was detected in
the dorsomedial (DMH) and arcuate (ARH) hypothalamic nuclei, para-
subthalamic nucleus (PSTN) and the lateral hypothalamic area (LHA).
More subtle hypothalamic signals, restricted to the PSTN and LHA,
were seen with RO5263397. The differences in hypothalamic profiles
do not likely reflect dose-specific effects of the two compounds given
that the signals elicited in the brainstem and amygdala were of similar
magnitude. Increased c-fos expression in response to ulotaront, and to
a lesser extent RO5263397, was also observed within a restricted area
of the nucleus accumbens shell (ACBsh), a major projection site of
dopaminergic neurons. In addition, both compounds upregulated c-fos
expression in the paraventricular nucleus of the thalamus (PVT) and
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com
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Figure 6: Ulotaront and RO5263397 modulate activity in neurocircuits governing energy balance and feeding. Whole-brain c-fos expression profiles following single
administration of ulotaront (3 mg/kg, ip) or RO5263397 (0.3 mg/kg, ip). (A) Voxel-level coronal maps of significant differences compared to vehicle (z-score > 1.95) shown from
anterior to posterior. Red and blue indicate increased and decreased c-fos expression, respectively. (B) Fold-change (log2 scale, mean � SEM) in c-fos positive cell counts in
appetite-regulating brain regions compared to corresponding vehicle controls. Dunnett’s test negative binomial generalized linear model with p-value adjustment for multiple
comparisons using FDR <0.05 (**p < 0.01, ***p < 0.001), N ¼ 8/group. Scale bar ¼ 1 mm. (C) Summary of compound-induced c-fos induction changes across the 14
individual brain regions. (D) Schematic of key brain regions and neurocircuits implicated in homeostatic and hedonic regulation of food intake. Brain regions significantly regulated
by ulotaront and RO5263397 vs ulotaront only are shown in dark and light green, respectively. Abbreviations: ACB, nucleus accumbens; ACBsh, nucleus accumbens shell; ARH,
arcuate hypothalamic nucleus; AP, area postrema; BLA, basolateral amygdalar nucleus; BST, bed nucleus of the stria terminals; CeA, central amygdalar nucleus; DMH, dorsomedial
nucleus of the hypothalamus; DMX, dorsal motor nucleus of the vagus nerve; DRN, dorsal raphe nucleus; LHA, lateral hypothalamic area; NTS, nucleus of the solitary tract; PB,
parabrachial nucleus; PFC, prefrontal cortex; PS, parastriatal hypothalamic nucleus; PSTN, parasubthalamic nucleus; PVN, paraventricular hypothalamic nucleus; PVT para-
ventricular nucleus of the thalamus; SNc, substantia nigra pars compacta; VTA, ventral tegmental area.
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locus ceruleus (LC) (Supplementary Figure 5). Statistically significant
decreases in c-fos expression were rare, highly scattered and primarily
observed at the voxel level. Of these, the most notable were seen in
response to RO5263397 in the dentate gyrus (DG) (Figure 6A and
Supplementary Figure 5). However, since baseline c-fos levels are
generally low in naïve mice, treatment-induced decreases in c-fos
expression are difficult to interpret and may reflect attenuation of
stress-induced neuronal activation elicited by the test article injection.
No prominent effects of ulotaront or RO5263397 were seen in midbrain
dopaminergic (ventral tegmental area and substantia nigra) or sero-
tonergic nuclei (dorsal raphe nucleus) (Supplementary Figure 5).

4. DISCUSSION

Metabolic Syndrome, characterized by central obesity, dyslipidemia,
hypertension and hyperglycemia, is highly prevalent in patients with
MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier GmbH. This is an
www.molecularmetabolism.com
schizophrenia and can be induced or exacerbated by the current
class of antipsychotic drugs (APDs) [23,26,30]. The prevalence is as
high as 69% in those with chronic illness and estimated to be 3e5
times higher than in the general population [25]. This represents a
significant problem as it increases the risk of cardiovascular disease
which likely contributes to the decreased life expectancy of schizo-
phrenia patients [25,58]. However, marked differences exist between
APDs in terms of metabolic side-effects with more recent work
providing evidence that antipsychotic-mediated improvements in
psychopathology are associated with metabolic disturbance [23].
Notably, the authors do not suggest that metabolic disturbance is a
requirement for efficacy, but rather highlight that the most efficacious
APDs tend to have the broadest polypharmacology, and that meta-
bolic effects might be due to off-target actions. This emphasizes the
need for a pharmacologically distinct class of compounds in the
treatment of schizophrenia.
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 9
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TAAR1 agonists, including the Phase 3 clinical development candi-
date ulotaront, have recently emerged as a potential new treatment
approach in schizophrenia and other psychiatric disorders including
depression, anxiety and substance abuse [1,59,60]. Intriguingly,
recent preclinical evidence has also identified TAAR1 as a novel
regulator of metabolic control and a potential target for obesity and
type 2 diabetes [16,17,61,62]. Here we expand on these findings to
show that TAAR1 agonists as a class reduce body weight and
improve glycemic control by exerting peripheral effects on glucose
homeostasis and gastric emptying, as well as directly modulating
homeostatic and hedonic neurocircuits regulating energy balance and
feeding. We primarily focused on the characterization of ulotaront
given its advanced clinical development stage [1,5]. Ulotaront was
discovered through a unique, target-agnostic approach optimized to
identify drug candidates that lack D2 and 5-HT2A receptor antagonism
(hallmarks of the antipsychotic class) while demonstrating a
phenotypic antipsychotic-like profile in vivo [6]. Subsequently, its
primary receptor mechanism was identified to be TAAR1 agonism
with additional 5-HT1A receptor agonism [6,9,63e65]. Notably, the
metabolic profiles of ulotaront and the selective TAAR1 agonists,
RO5166017 and/or RO5263397, were strikingly similar including the
effects on body weight, glucose, insulin, gastric emptying and c-fos
expression. Although 5-HT1A receptors have been implicated in en-
ergy balance, partial and full agonists have generally been shown to
promote food intake and hyperglycemia in rodents while antagonists
produced the opposite effect [66e69]. In addition, the 5-HT1A
agonist, and antianxiety agent, buspirone has not been associated
with clinically meaningful or consistent effects on body weight and
metabolic parameters [70,71]. Together this strongly suggests that
the beneficial effects of ulotaront on metabolic regulation are TAAR1-
mediated.
Single administration of ulotaront and RO5166017 improved oral
glucose tolerance in lean and/or diabetic db/db mice in an insulin-
independent manner. The reductions in glucose excursion were
likely triggered by a delay in gastric emptying, which was observed
with all three TAAR1 agonists. Similar effects were previously shown
for RO5166017, implicating gastric emptying as the main mechanism
by which glucose excursion is reduced under these experimental
(acute dosing) conditions [16]. However, when the stomach is
bypassed by an iv glucose challenge, RO5166017 was reported to
increase insulin secretion, which is not consistent with our results.
Although the authors propose that TAAR1 agonists exert insulin
secretagogue-like effects in vivo, the robustness of the effect is unclear
as only one timepoint (i.e., 10 min) was assessed following single,
subcutaneous administration of RO5166017 at a high dose (3 mg/kg)
[16]. In addition, no significant decrease of glucose was noted during
the ivGTT, which is consistent with our findings. However, both
RO5166017 and RO5256390 were previously shown to increase
glucose-stimulated insulin secretion in rat pancreatic b-cells and/or
human islets [16,62]. This has led to the hypothesis that TAAR1-
agonists exert incretin-like effects [16]. Incretin hormones, including
GLP-1 and GIP, improve glycemia via their ability to enhance insulin
secretion and by inhibiting gastric emptying to slow glucose entry to
the general circulation [72,73]. Further work with all three agents is
needed to fully elucidate TAAR1-mediated insulin secretagogue effects
in vitro and in vivo.
Our data also show that prolonged (15 days) treatment with ulotaront
improves insulin sensitivity in DIO mice. Elevated fasting glucose and
insulin levels, as well as the HOMA-IR, were dose-dependently
decreased by ulotaront. In addition, a significant and dose-
dependent reduction in body weight was also observed. The
10 MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier G
magnitude of body weight loss compared to vehicle (�7%) and the
improvement in glycemic control following ulotaront treatment are
consistent with those described for RO5166017 in DIO mice [16].
Weight loss effects observed in DIO models have generally translated
to humans although the maximal efficacy is historically greater in
rodents [73]. The greatest effects reported in rodents and humans
are with incretin-based therapies including the GLP-1R agonist
semaglutide and the dual GIP/GLP-1R agonist tirzepatide [73].
Although the magnitude of weight loss achieved with ulotaront
(�7%) was notably smaller compared to liraglutide (�17%) in this
study, the effect was similar to those reported for other weight-
lowering drugs in rodent DIO models including orlistat (gastrointes-
tinal lipase inhibitor), lorcaserin (5-HT2C receptor agonist) and
naltrexone/bupropion (opioid receptor antagonist and dopamine/
norepinephrine reuptake inhibitor) [73]. Ulotaront-mediated decreases
in body weight and body weight gain were also seen in rats fed a
HFD, as well as in two rodent models of iatrogenic weight gain.
Chronic ulotaront administration (21 days) normalized corticosterone-
induced body weight-gain in mice. In addition, we show that
switching from olanzapine to ulotaront or RO5263397 reverses the
olanzapine-induced body weight-gain in rats. Importantly, these ef-
fects were more pronounced compared to those observed in controls
that just discontinued olanzapine treatment. These studies were
designed to model a more clinically relevant situation where treat-
ment switches are common. RO5263397 and ulotaront have also
been reported to attenuate olanzapine-induced body weight gain in
rodents when co-administered for 14 and 34 days, respectively
[17,21]. As suggested by Revel and colleagues, TAAR1 agonists
represent the first pharmacological class that is associated with
antipsychotic-like activity while demonstrating protection from atyp-
ical antipsychotic-induced body-weight gain.
The body weight lowering effects of TAAR1 agonists are likely
associated with decreased food intake and the slowing of gastric
emptying, as is seen for GLP-1R agonists. Ulotaront and RO5263397
reduced food consumption in the rat HFD model without notably
affecting water intake. Potentially, as a consequence of body weight
reduction, liver triglyceride levels were improved with ulotaront
consistent with reports from earlier RO5166017 studies [16]. Inter-
estingly, the effect of ulotaront on food intake was not as pronounced
in DIO mice and only noted during the first few days of dosing. In
contrast, water intake was dose-dependently increased throughout
the study duration, approaching statistical significance. These initial
observations suggest that TAAR1 agonists may affect energy
expenditure however this possibility requires further investigation.
In light of preclinical findings, it is worth noting that treatment with
ulotaront was not associated with clinically meaningful changes in
body weight or metabolic parameters (i.e. glucose, triglycerides,
cholesterol or HbA1c) in a 4 week randomized, placebo-controlled
clinical trial in schizophrenia patients or the subsequent 26-week
open label extension [5,7]. While this phase 2 study supports a
differentiated metabolic-risk profile for ulotaront compared to APDs
[8,23,26], the majority of subjects were not obese (i.e. mean BMI at
baseline ¼ 25) or hyperglycemic which likely precluded the ability to
detect treatment-induced weight loss or metabolic improvements
[5,7]. In addition, the treatment regimen and trial duration required to
demonstrate potential effects of ulotaront on metabolic endpoints are
currently unknown. Clinical studies in patients with metabolic
dysfunction are therefore needed to further explore the potential
benefits of TAAR1 agonists, including ulotaront. In this regard, dedi-
cated phase I studies in schizophrenia patients with metabolic syn-
drome are currently ongoing to evaluate the effects of ulotaront on
mbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com

124

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


Q2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

MOLMET101883_proof ■ 19 January 2024 ■ 11/14
gastric emptying, glycemic control, and weight-associated parameters
(NCT05402111, NCT05463770, NCT05542264).
In addition to producing direct peripheral, paracrine or endocrine ef-
fects in the gastrointestinal tract, we also assessed whether TAAR1
activation modulates key neuronal circuits implicated in the regulation
of energy balance and food intake. Using c-fos protein expression as
an indirect marker of neuronal activity, we mapped the whole-brain
activation signatures of ulotaront and RO5263397 in mice. Largely
overlapping expression profiles were seen for both compounds further
suggesting TAAR1-mediated effects. Increased c-fos levels were
detected in several interconnected nuclei and neurocircuits involved in
the regulation of homeostatic feeding and reward sensitivity. These
included discrete hypothalamic nuclei, central amygdala, BST, PB and
the brainstem dorsal vagal complex (DVC) containing the NTS, AP and
DMX. Modulation of vagal neurocircuitry, including the complex
interplay between the DVC, enteric nervous system, hypothalamus and
limbic forebrain, is heavily implicated in the regulation of gastric
motility and satiety [74]. Activation of the DVC, particularly the NTS, is
associated with prominent satiation signals, which are transmitted
downstream to the PB, CEA and hypothalamus to promote meal
termination [52,53,75]. Notably, increased DVC activity and DVC-limbic
forebrain connectivity, has been proposed as a potential mechanism
underlying the anorectic effects and nausea responses of GLP-1R
agonists [34,40,76e80]. The extent to which TAAR1 agonists are
associated with nausea and/or emesis is subject to further research.
Recent work in rats suggests that RO5166017 and RO5263397 can
induce conditioned taste aversion [81]. In phase 1 and 2 clinical
studies, gastrointestinal-related adverse events, including nausea,
were observed in some subjects receiving ulotaront, but these were
generally mild or moderate in severity [5,7,8,82,83].
Engagement of hypothalamic mechanisms has been repeatedly
implicated in the weight-lowering properties of several drugs. Key
hypothalamic nuclei engaged in feeding control and energy expendi-
ture were modulated by ulotaront including the ARH, DMH and LHA
[54,55]. These brain regions are tightly interconnected and receive
and/or transmit multiple peripheral inputs enabling nutrient sensing
and feeding regulation. Notably, only discrete subareas of the DMH and
LHA were activated in response to ulotaront which may suggest
regulation of specific neuronal subpopulations. In addition, upregula-
tion of c-fos was observed in the PS and PSTN. Activation of the PSTN
has been linked to the suppression of hedonic feeding behavior,
mediated via connectivity to the CEA and the insular cortex [84,85].
The effects of RO5263397 within the hypothalamus were restricted to
the PS, LHA and PSTN, representing the most prominent differentiation
between the two compounds. This may relate to the different phar-
macological profiles of (i.e., selective vs non-selective TAAR1 agonist)
and/or the doses tested. In addition, ulotaront and RO5263397 are full
and partial TAAR1 agonists, respectively. Although differences be-
tween TAAR1 full and partial agonists have been described in slice
electrophysiology studies [17,86], the reported behavioral profiles
in vivo are generally consistent [1], in line with our current results.
Ulotaront, and to a lesser extent RO5263397, also increased c-fos
expression within the ACBshell, which receives prominent dopami-
nergic input from the VTA. The VTA-ACB mesolimbic dopamine
pathway is critically involved in the incentive, reinforcing and moti-
vational aspects of food intake. Prominent effects of TAAR1 agonists on
the dopaminergic system have been reported, including decreased
VTA neuronal firing and presynaptic dopamine synthesis capacity and
release [1,12,17,37,87]. Modulation of dopaminergic circuits is likely
associated with the antipsychotic-like effects of TAAR1 agonists as
well as with the beneficial effects on compulsive, binge-like eating
MOLECULAR METABOLISM xxx (xxxx) xxx � 2024 The Author(s). Published by Elsevier GmbH. This is an
www.molecularmetabolism.com
reported for RO5256390 in rats [20]. Ulotaront and RO5263397 also
increased c-fos expression in the PVT, which represents a key thalamic
relay station, connecting the limbic forebrain with hindbrain nuclei
[88].
The c-fos expression profiles elicited by ulotaront and RO5263397
share a high degree of overlap with those previously reported for
several weight-lowering compounds [34]. Most notably, this includes
agents with diverse mechanisms such as the GLP-1R agonist sem-
aglutide, bromocriptine (dopamine receptor agonist) and rimonabant
(cannabinoid CB1 receptor antagonist). Lack of bloodebrain barrier
penetrability of semaglutide suggests that c-fos signals in the BST,
CEA, PS and PB are secondary to direct effects in the circum-
ventricular/paraventricular areas (i.e. NTS/DMX and hypothalamus)
[51]. Both, ulotaront and RO5263397 readily cross the bloodebrain
barrier [6,17,89] suggesting direct modulation of c-fos expression.
Future studies investigating time- and dose-response relationships on
c-fos expression are warranted to further enable interpretation of
TAAR1-mediated effects on whole-brain neuronal activity. Character-
ization of the specific cell-types modulated by ulotaront and
RO5263397 is necessary to advance the mechanistic understanding of
TAAR1-mediated metabolic regulation. In addition, other imaging ap-
proaches are needed to profile any inhibitory effects of TAAR1 agonist
on neuronal activity given that baseline c-fos expression is generally
too low to enable accurate detection of decreased activity.
In summary, we show that TAAR1 agonists as a class, including the
clinical drug-candidate ulotaront, not only lack APD-induced metabolic
liabilities but can reduce body weight and improve glycemic control in
rodent models of diabetes, obesity, and/or iatrogenic weight gain.
In vivo pharmacology and whole-brain c-fos imaging studies link the
underlying mechanisms to TAAR1-mediated peripheral effects on
glucose homeostasis and gastric emptying as well as direct modula-
tion of homeostatic and hedonic neurocircuits regulating energy bal-
ance and feeding. The current preclinical evidence suggests that
TAAR1 agonists may not only hold promise to improve schizophrenia
symptoms, but potentially also comorbid metabolic dysfunction. If
translated to humans, the beneficial metabolic effects of TAAR1 ago-
nists may represent an improved riskebenefit profile compared to
established antipsychotic drug classes.
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