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Suppli MP, Rigbolt KT, Veidal SS, Heebøll S, Eriksen PL,
Demant M, Bagger JI, Nielsen JC, Oró D, Thrane SW, Lund A,
Strandberg C, Kønig MJ, Vilsbøll T, Vrang N, Thomsen KL,
Grønbæk H, Jelsing J, Hansen HH, Knop FK. Hepatic transcrip-
tome signatures in patients with varying degrees of nonalcoholic fatty
liver disease compared with healthy normal-weight individuals. Am J
Physiol Gastrointest Liver Physiol 316: G462–G472, 2019. First
published January 17, 2019; doi:10.1152/ajpgi.00358.2018.—Nonal-
coholic fatty liver disease (NAFLD) represents a spectrum of
conditions ranging from simple steatosis (NAFL), over nonalco-
holic steatohepatitis (NASH) with or without fibrosis, to cirrhosis
with end-stage disease. The hepatic molecular events underlying
the development of NAFLD and transition to NASH are poorly
understood. The present study aimed to determine hepatic tran-
scriptome dynamics in patients with NAFL or NASH compared with
healthy normal-weight and obese individuals. RNA sequencing and
quantitative histomorphometry of liver fat, inflammation and fibrosis
were performed on liver biopsies obtained from healthy normal-
weight (n � 14) and obese (n � 12) individuals, NAFL (n � 15) and
NASH (n � 16) patients. Normal-weight and obese subjects showed
normal liver histology and comparable gene expression profiles. Liver
transcriptome signatures were largely overlapping in NAFL and
NASH patients, however, clearly separated from healthy normal-
weight and obese controls. Most marked pathway perturbations iden-
tified in both NAFL and NASH were associated with markers of lipid
metabolism, immunomodulation, extracellular matrix remodeling,
and cell cycle control. Interestingly, NASH patients with positive
Sonic hedgehog hepatocyte staining showed distinct transcriptome
and histomorphometric changes compared with NAFL. In conclusion,
application of immunohistochemical markers of hepatocyte injury
may serve as a more objective tool for distinguishing NASH from
NAFL, facilitating improved resolution of hepatic molecular changes
associated with progression of NAFLD.

NEW & NOTEWORTHY Nonalcoholic fatty liver disease
(NAFLD) is the most common liver disease in Western countries.
NAFLD is associated with the metabolic syndrome and can progress
to the more serious form, nonalcoholic steatohepatitis (NASH), and
ultimately lead to irreversible liver damage. Using gold standard
molecular and histological techniques, this study demonstrates that the
currently used diagnostic tools are problematic for differentiating mild
NAFLD from NASH and emphasizes the marked need for developing
improved histological markers of NAFLD progression.

histomorphometry; nonalcoholic fatty liver disease; nonalcoholic ste-
atohepatitis; transcriptomics

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is an umbrella
term that comprises a continuum of liver conditions ranging
from simple steatosis, known as nonalcoholic fatty liver
(NAFL), to its more aggressive manifestation, nonalcoholic
steatohepatitis (NASH). While NAFL has a relatively benign
course, patients with NASH are at increased risk of developing
liver fibrosis, which can progress to cirrhosis, hepatocellular
cancer, and end-stage liver disease (16, 32, 43). As conse-
quence, NASH carries a poor prognosis and constitutes an
increasingly frequent reason for liver transplantation (16, 51).
The pathogenesis of NAFLD is closely associated with the
metabolic syndrome (47, 57), also being an important driver of
cardiovascular complications and overall mortality in patients
with NAFLD (1, 24). As the globalization of NAFLD runs in
close parallel to obesity and type 2 diabetes (53), and thera-
peutic advances have been slow, the burden of NAFLD has
become a major public health issue.

Given the lack of reliable noninvasive surrogate markers, the
diagnosis of NASH rests on histomorphological criteria de-
fined by liver biopsy-proven hepatocellular steatosis, lobular
inflammation, and evidence of hepatocyte injury such as bal-
looning degeneration (5, 8). Presence of fibrosis is a sign of
chronic inflammation-induced liver injury and represents the
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strongest predictor of long-term outcomes in NASH (2, 12).
The pathogenesis of NASH is complex and considered multi-
factorial. A number of ‘multiple hit’ hypotheses have been
proposed that describe both parallel and sequential molecular
mechanisms leading to NASH in the setting of risk factors such
as obesity and type 2 diabetes (7, 40). Accordingly, defective
lipid metabolism, mounting lipotoxicity, oxidative stress, and
immune imbalances have all been linked to NAFLD progres-
sion, but the relationships among the various manifestations of
NAFLD pathology are poorly understood. Importantly, delin-
eation of molecular signaling patterns specific to disease pro-
gression may provide a basis for unraveling the mechanism
triggering the transition from NAFL to NASH and eventually
the development of targeted and effective treatments for
NASH.

Genomewide mapping of gene expression in tissue biopsies
has proved valuable for identifying novel diagnostic, prognos-
tic, and therapeutic markers in various diseases, particularly
cancer (48). In contrast, advances in hepatic gene signature
classifiers for NASH have been slow, and gene transcription
programs associated with progression of the disease have
therefore not been characterized in detail. The interpretation of
available gene expression data is further complicated by the
different transcriptomics technologies and control group con-
ditions applied. To date, most insight into liver transcriptome
changes in NAFLD has been based on microarray platforms of
preselected genes (3, 35, 45, 50, 52, 54, 55). Next-generation
sequencing methods, including RNA sequencing, provide hy-
pothesis-free and comprehensive detection of transcribed genes
with increased sensitivity, specificity, and broader dynamic
range. However, there has been a paucity of liver whole-
transcriptome studies in NASH, and next-generation sequenc-
ing has therefore only very recently emerged as a powerful tool
for addressing molecular mechanisms in NAFLD (10, 15, 17,
22, 44). Notably, there is a marked lack of studies addressing
hepatic gene expression signatures in NAFLD subtypes con-
sistent with the spectrum of disease progression. The interpre-
tation of hepatic molecular changes in NAFLD is further
challenged by the various indecisive control specimens applied
(41, 42, 45, 54, 55), making unresolved the degree to which the
liver transcriptome differs between patients with NAFLD and
healthy control individuals.

With the aim of clarifying changes in hepatic signaling
pathways in NAFLD and the molecular mechanisms underly-
ing progression of the disease, this study investigates the
transcriptome signature and quantitative histological markers
in liver biopsies, covering the full spectrum from healthy
normal-weight and obese individuals over individuals with
NAFL to patients with NASH.

METHODS

Individuals

Healthy normal-weight [n � 14, body mass index (BMI) 18.5–25
kg/m2] and overweight (n � 12, BMI 30–40 kg/m2) participants were
recruited at the Center for Diabetes Research, Gentofte Hospital
(University of Copenhagen, Hellerup, Denmark). NAFLD patients
(n � 31) were screened, diagnosed, and recruited at the Department of
Hepatology and Gastroenterology, Aarhus University Hospital (Aar-
hus, Denmark), as described in detail previously (20). NAFLD was
diagnosed on the basis of ultrasonographic evidence of hepatic ste-
atosis, elevated liver enzymes, and compatible liver histology. For all

participants, exclusion criteria included diabetes and excessive alco-
hol intake (�20/12 g/day for men/women). Patients with known
diabetes were excluded to avoid the confounding influence of long-
term hyperglycemia or antidiabetic medications. All participants gave
written informed consent before inclusion. The study protocol con-
formed to the ethics guidelines of the 1975 Declaration of Helsinki, as
reflected in the approvals by the Research Ethics Committee of the
Capital Region of Denmark (H-6-2014-097), the Danish National
Committee on Health Research Ethics (20110132; 1-10-72-140-14),
and the Danish Data Protection Agency (GEH-2014-049; 1-16-02-
471-14; 1-16-02-322-15).

Biochemical and Histopathological Evaluation

All included participants underwent a liver biopsy for histological
evaluation. Percutaneous liver biopsy was performed under ultrasound
guidance. The liver biopsy was divided into a �10-mm sample (portal
tracks �10) and fixed in buffered formalin for histological evaluation.
The remaining sample material was placed in RNAlater (Thermo-
Fisher Scientific, Waltham, MA) or snap-frozen in liquid nitrogen and
stored at �80°C until later processing. Biochemical analyses were
applied to fasting blood samples and included alanine aminotransfer-
ase and aspartate aminotransferase.

Liver biopsy sections were stained with hematoxylin-eosin (H&E)
and Masson’s trichrome. Semiquantitative histopathological scoring
and differentiation between normal liver tissue, NAFL (n � 15
patients), and NASH (n � 16 patients) were performed in a blinded
manner by board-certified, experienced histopathologists according to
steatosis, activity, and fibrosis (SAF) (6), and Kleiner fibrosis stage
(F0–4) (25).

RNA Sequencing

Liver transcriptome analysis was performed by RNA sequencing of
RNA extracts from liver biopsy samples, as described in detail
elsewhere (26). Only samples of high-quality RNA (RNA integrity
number �7.5) were used in the mRNA sample preparation for
sequencing. RNA sequencing libraries were prepared with NeoPrep
(Illumina, San Diego, CA) using an Illumina TruSeq Stranded mRNA
Library kit for NeoPrep (Illumina) and sequenced on a NextSeq 500
(Illumina) with a NSQ 500 hi-Output KT v.2 (75 CYS, Illumina).
Reads were mapped to the GRCh38.p10 Ensembl human genome
using STAR v.2.5.2a with default parameters, and the corresponding
read counts were corrected for batch effects from sample collection
sites in the cohorts containing NAFL/NASH patients by using the R
package Limma (39). The R package DESeq2 v.1.18.1 (30) was used
for differential expression analysis, P values were adjusted using the
Benjamini-Hochberg method, and a cut-off of 0.05 was applied. In the
differential expression analysis containing only NAFL and NASH
patients, we corrected for sex bias in the regression model using
DESeq2.

Functional Annotation of Differentially Expressed Genes

An in-house database of candidate genes associated with NAFLD
and fibrosis (Supplementary Table S1; supplemental material for this
article is available online at the Journal website) was used to annotate
genes involved in NAFLD progression against the control groups. In
the comparison between NASH and NAFL patient groups the Reac-
tome pathway database (13) was used for functional annotation in a
gene set analysis using the R package PIANO v.1.18.1 (49), with the
Stouffer method and Benjamini-Hochberg-adjusted P values.

Histology

Liver biopsy samples were paraffin embedded, sectioned, and
stained with H&E (Dako, Glostrup, Denmark), anti-galectin-3 (Bio-
legend, San Diego, CA), Picro-Sirius red (PSR, Sigma-Aldrich,
Broendby, Denmark), anti-cytokeratin 8/18 (CK-8/18; Leica Biosys-
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tems, Newcastle, UK), or anti-Sonic hedgehog (SHH; Abcam, Cam-
bridge, UK). To prevent batch differences in staining intensities,
staining procedures were performed on all samples in one single
immunohistochemistry run. All sections were evaluated for SHH-
positive and CK-8/18-negative hepatocyte staining by two individual
histopathologists. For quantitative analysis of H&E, galectin-3 and
PSR, stained liver sections were analyzed using digital imaging
software (Visiomorph; Visiopharm, Hørsholm, Denmark). Histo-
chemical positive staining area was expressed relative (%) to total
tissue sectional area (fractional area). Quantitative histological data
were analyzed using GraphPad Prism v.7.03 software (GraphPad, La
Jolla, CA), and results are shown as means � SE. A one-way
ANOVA with Dunnett’s post hoc test was applied, with P � 0.05
considered statistically significant.

RESULTS

Clinical Characteristics

Anthropometric and blood measures are indicated in
Table 1. Average BMI (kg/m2 � SD) was 23.1 � 1.6
(healthy normal-weight controls, n � 14), 33.2 � 1.3 (over-
weight individuals, n � 12), 32.8 � 4.8 (NAFL patients,
n � 15), and 33.9 � 6.2 (NASH patients, n � 16) (Table 1).
The clinical characteristics for a subset of patients with
NAFL and NASH have been reported previously (20).

Liver Histopathological Characteristics

Histopathological scores are indicated in Table 2. Healthy
normal-weight and obese individuals had normal liver mor-
phology, with few exceptions showing benign isolated steato-
sis (normal-weight individual, n � 1; obese individuals, n �
6). None of the healthy normal-weight and obese individuals
had histological evidence of lobular inflammation, hepatocyte
ballooning, or fibrosis. Patients diagnosed with NAFL had liver
steatosis of varying severity, with most patients (10 of 15)
presenting severe steatosis. Almost all patients with NAFL (13
of 15) also showed mild-grade lobular inflammation. Inclusion
of NASH patients (n � 16) was based on histopathological
confirmation of hepatocyte ballooning morphology.

Liver Transcriptome Profiles

Global gene expression patterns. To compare global gene
expression profiles in the liver biopsy samples, a principal
component analysis (PCA) was performed. The primary
PCA, accounting for the major variability in the data set,
indicated that liver transcriptome profiles in healthy normal-
weight controls and obese individuals clustered together and
were clearly separated from the transcriptome profiles in
NAFL/NASH patient samples (Fig. 1A). Whereas liver bi-
opsies from NAFL and NASH patients displayed an exten-
sive number of differentially expressed genes (DEGs; n �
8,244), a considerably lower number of DEGs (n � 55) were
detected in obese individuals compared with normal-weight
controls (Fig. 1B). For initial validation of the DEGs iden-
tified, we probed for candidate gene transcripts associated
with NAFLD and fibrosis (see complete list of genes in
Supplementary Table S1). None of the preselected genes
were significantly regulated in obese control individuals
compared with normal-weight controls. In contrast, NAFL/
NASH patients showed significant regulations of a large
proportion of candidate genes (Fig. 1C). Gene regulations in
NAFL and NASH patients were particularly associated with
stimulated synthesis of fatty acids (SCD1) and cholesterol
(HMGCR, HMGCS1, HMGCS2, SQLE), increased lipoprotein
activity (LDLR, VLDLR, SCARB1), impaired insulin function
(G6PASE, INSR, IRS1, IRS2, MEK2, PEPCK, PRCKI, PRKCZ,
PYG), increased FXR signaling (FXR, APOCII, APOCIII, MDR3,
OAT2, OSTB, UGT2B4), modulation of monocyte differentiation
and recruitment (CCR1, CD14, CD163, CD68, CD86, F4/80,
LGALS3, MCP-1, TGFB), and inflammation signaling (IKK, JNK,
SMAD3, SMAD4, TLR4, TNFR, TRAF6), proapoptotic activity
(CASP3, CASP6, CASP7), and stimulated collagen formation
(A-SMA, COL1A1, COL1A2, COL3A1).

Liver transcriptome changes in NAFL vs. NASH. To obtain
further resolution of liver transcriptome changes in NASH vs.
NAFL, a subsequent principal component analysis was per-
formed for group-wise comparison of global gene expression

Table 1. Biometrics and blood biochemistry

Group n M/W Age, yr Height, cm Weight, kg BMI, kg/m2 ALT, U/l AST, U/l

Normal-weight controls 14 14/0 39.5 � 12.0 181.7 � 5.4 76.6 � 7.6 23.1 � 1.6 31.8 � 8.9 33.4 � 9.0
Obese controls 12 12/0 36.6 � 10.2 186.8 � 8.1 115.2 � 12.1 33.2 � 1.3 39.7 � 15.8 41.2 � 15.4
NAFL 15 9/6 39.4 � 10.6 173.9 � 9.4 98.9 � 15.3 32.8 � 5.1 96.7 � 55.8 45.1 � 23.8
NASH 16 12/4 38.9 � 17.0 173.8 � 8.9 102.9 � 22.6 33.9 � 6/2 115.0 � 50.0 54.8 � 20.6

Values are means � SD. ALT,alanine aminotransferase; AST, aspartate aminotransferase; NAFL, nonalcoholic fatty liver; NASH, nonalcoholic steatohepa-
titis; M, men; W, women.

Table 2. Semiquantitative evaluation of steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis

Steatosis Score Inflammation Score Ballooning Score Fibrosis Stage

Group n 0 1 2 3 0 1 2 0 1 2 0 1 2 3 4

Normal-weight controls 14 13 1 14 14 14
Obese controls 12 6 5 1 12 12 12
NAFL 15 2 3 10 2 13 15 14 1
NASH 16 2 14 16 10 6 3 12 1

Histopathology was scored on liver biopsy sections according to criteria outlined by the NASH-Clinical Research Network (25). Differentiation between
nonalcoholic fatty liver (NAFL; presence of steatosis in �5% of hepatocytes; activity score �2) and nonalcoholic steatohepatitis (NASH; presence of hepatocyte
ballooning; activity score �2) was performed using the Steatosis-Activity-Fibrosis (SAF) algorithm (6).
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profiles (Fig. 2A). As the two control groups consisted only of
male subjects, the statistical analysis was adjusted to account
for gender bias when discriminating liver transcriptome
changes in NAFL versus NASH patients. Compared with
NAFL, a total of 132 genes (upregulated, n � 112; downregu-
lated, n � 20) were significantly regulated in NASH (Fig. 2B;
see Supplemental Table S2 for complete list of DEGs). To get
a systematic overview of biological pathway perturbations in
NASH versus NAFL, a gene set enrichment analysis was
subsequently conducted. The analysis identified a subset of
pathways significantly enriched in NASH compared with
NAFL (Fig. 2C). Most significantly regulated pathways
were extracellular matrix organization (COL1A2, COL4A1,
COL4A6, COL16A1, CTSK, EFEMP1, FBLN5, LAMA1,
LAMC3, LTBP2, LOXL4, MMP23, MMP24, VCAN) and
immune system (C5AR1, CASP1, DAPP1, GSN, EDA,
MRC2, OLR1, PLAU, RNASE6, TMEM173), see Fig. 2D.

The top 10 significantly regulated genes with increased or
decreased expression are indicated in Table 3.

Comparison of liver transcriptome profiles in SHH-positive
vs. SHH-negative NASH patients. To facilitate improved de-
tection of hepatocyte degenerative profiles, immunohistochem-
ical markers of hepatocyte injury (SHH, CK-8/18) (17, 35)
were applied. Clinical and liver histopathological characteris-
tics of the two NASH subgroups are indicated in Fig. 3A. In
NASH patients, most biopsies (11 of 16) showed a clear
overlap of SHH-positive and CK-8/18-negative hepatocytes
with corresponding hepatocyte ballooning profiles visualized
by conventional H&E staining (Fig. 3B). Since SHH-positive
staining served as a more objective marker for ballooning
hepatocytes in the biopsy samples, this prompted us to com-
pare global gene expression patterns in liver biopsies from
NASH patients categorized as SHH positive (n � 11) or SHH
negative (n � 5). NASH biopsies with SHH-positive hepato-
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cyte staining showed discernible transcriptome changes com-
pared with NAFL (n � 282 DEGs; Fig. 3C), including genes
associated with extracellular matrix organization and remodeling
(CAPN2, COL1A2, COL4A1, COL4A2, COL16A1, COL18A1,
EFEMP1, FBLN5, LAMC3, LOXL4, MGP, MMP2, MMP24,
PODN, TIMP1, VCAN), cell adhesion/tight junction function
(ANTXR1, CLDN11, EPCAM), immune modulation (EDA, ELK1,
IFI16, IL17RC, LEAP2, TNFRSF1A), cell cycle control (CENPU,

MCM4, MCM6, MCM7, POLA2, SUN2), apoptosis (CASP1,
CYCS, GSN, PSMC2), metallothionein family antioxidant pro-
teins (MT1E, MT1F, MT1M, MT1X, MT2A), and microtubule
dynamics (STMN2). In contrast, gene expression signatures in
SHH-negative NASH patients were virtually identical to those of
NAFL patients (n � 2 DEGs; ACSL4, GSTM1). All DEGs
detected in the two NASH subgroups are listed in Supplementary
Tables S3 and S4 (online only), respectively.
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Quantitative Histology

Assessment of the proportional (fractional) area of liver fat
(Fig. 4A) revealed similar marked hepatocellular fat accumu-
lation in patients with NAFL (20.3 � 2.0, P � 0.001), SHH-
negative NASH (21.6 � 3.3, P � 0.001), and SHH-positive
NASH (24.2 � 2.6%, P � 0.001) compared with normal-
weight (2.9 � 0.4%) and obese individuals (5.7 � 1.2%).
Mean fractional areas of galectin-3 staining (Fig. 4B) were
similar in normal-weight (0.1 � 0.01%) and obese individuals
(0.3 � 0.1%, P � 0.05). Galectin-3 levels tended to be ele-
vated in patients with NAFL (0.5 � 0.1%, P � 0.05), and
SHH-negative NASH (0.7 � 0.3, P � 0.05), however, was
significantly increased only in SHH-positive NASH patients
(1.6 � 0.4%, P � 0.001). Compared with normal-weight indi-
viduals, the fractional area of PSR-stained collagen fibers (Fig.
4C) was significantly increased only in individuals with SHH-
positive NASH (3.1 � 0.6% vs. 1.7 � 0.2%, P � 0.01).

DISCUSSION

We herein report largely overlapping liver transcriptome sig-
natures in patients diagnosed with NAFL and NASH. Compared
with NAFL, NASH patients with positive SHH staining showed
distinct transcriptome signature and quantitative histopathological
changes. These findings suggest that using only histomorphologi-
cal criteria (hepatocyte ballooning) for diagnosing NASH may
insufficiently separate the two NAFLD subtypes and mask mo-
lecular mechanisms involved in the transition from NAFL to
NASH.

The liver transcriptome and associated functional annota-
tions were largely overlapping in healthy normal-weight and
obese individuals, indicating that obesity did not act as a

confounding factor in the evaluation of disease-associated
transcriptome signatures in NAFL and NASH. Gene expres-
sion signatures in obese patients with NAFL or NASH were
profoundly distinguished from both healthy normal-weight
and obese individuals. Considering the extent and diversity
of gene expression changes, this suggests widespread alter-
ations in hepatic molecular signaling in NAFL and NASH.
Global gene expression profiles in the two NAFLD groups
showed a relatively high degree of clustering, indicating a
large degree of overlap in liver transcriptome changes,
which is consistent with the NASH patients showing rela-
tively low disease severity. Accordingly, several disease-
associated candidate genes were differentially expressed in
both NAFL and NASH patients. Previous microarray, RNA
sequencing, and meta-analysis studies have identified simi-
lar gene transcriptional alterations associated with lipid
metabolism (HMGCS2, LDLR, SCD1) (3, 55, 58), insulin
receptor function/glucose metabolism (IRS2, G6PASE) (3,
28, 58), farnesoid X receptor (FXR) signaling (PPARA)
(58), monocyte recruitment (CD14, CD163) (41, 58), and
inflammation signaling (TGFB) (28), as well as stellate cell
activation and fibrogenesis (A-SMA, COL1A1, COL1A2,
COL3A1, COL6A1, COL6A2, PDGF) (15, 28, 35, 41, 45,
58), further validating our RNA sequencing data set. An
unsupervised analysis was subsequently applied for full-
scale mapping of liver transcriptome signatures in NAFL
and NASH patients. Because control groups consisted of
male subjects only, the comparative analysis of NAFL and
NASH patients were corrected for sex bias in the statistical
analysis. A signature of 132 genes differentiated NASH
patients from those diagnosed with NAFL. Considering the
comprehensive gene expression changes in NAFL/NASH

Table 3. Top 10 upregulated and downregulated genes in NASH compared with NAFL

Gene Symbol Gene Name P Value
Fold Change

NASH vs. NAFL Function Reactome Pathway

Upregulated genes
MMP2 Matrix metallopeptidase 2 4.22E�04 1.97 ECM remodeling ECM organization
FMNL3 Formin-like 3 1.65E�03 1.58 Cell-cell adhesion, cell proliferation Signal transduction
OTOA Otoancorin 1.65E�03 5.51 Cell-cell adhesion Metabolism of proteins
CPXM1 Carboxypeptidase X, M14

family member 1
1.65E�03 9.31 ECM remodeling NA

PROCR Protein C receptor 1.65E�03 1.93 Serine protease, cell proliferation Hemostasis
MMP24 Matrix metallopeptidase 24 1.65E�03 3.75 ECM remodeling ECM organization
TNNT1 Troponin T1, slow skeletal type 1.65E�03 35.11 Filament regulatory protein Muscle contraction
GPC3 Glypican 3 2.21E�03 4.16 Cell proliferation Metabolism of proteins
ADGRG1 Adhesion G protein-coupled receptor G1 2.21E�03 2.27 Cell-cell adhesion, collagen receptor NA
MRC2 Mannose receptor C type 2 3.72E�03 1.75 ECM remodeling, cell proliferation Immune system

Downregulated genes
SLC25A48 Solute carrier family 25

member 48
1.65E�03 0.14 Transmembrane transport NA

MT1E Metallothionein 1E 1.65E�03 0.45 Antioxidant protein Metallothioneins bind metals
MAT1A Methionine adenosyltransferase 1A 2.21E�03 0.69 Transmethylation, cell proliferation Methylation
MT1X Metallothionein 1X 2.62E�03 0.49 Antioxidant protein Metallothioneins bind metals
ST3GAL6 ST3 beta-galactoside alpha-2,

3-sialyltransferase 6
7.50E�03 0.71 Cell-cell adhesion, cell proliferation Metabolism of proteins

C4ORF48 Chromosome 4 open reading
frame 48

7.50E�03 0.12 Cell proliferation NA

ETNK2 Ethanolamine kinase 2 9.91E�03 0.70 Phospholipid synthesis Metabolism of lipids
ABHD15 Abhydrolase domain containing 15 1.02E�02 0.82 Adipogenesis, lipolysis NA
MXI1 MAX interactor 1, dimerization protein 1.05E�02 0.72 Potential tumor suppressor NA
HORMAD2 HORMA domain containing 2 1.77E�02 0.50 Cell proliferation, cell cycle NA

Genes are ranked according to P value. See Supplemental Table S2 for complete list of differentially expressed genes (DEGs). ECM, extracellular matrix; NA,
gene pending Reactome database curation.
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compared with healthy normal-weight controls, this further
emphasizes the relatively discrete changes in gene expres-
sion patterns specific to NASH. Also, the considerable
overlap between global liver transcriptome profiles associ-
ated with the two NAFLD subtypes supports the concept
that a continuum of interacting molecular mechanisms and
signaling pathways drives the transition from NAFL to
NASH (7, 34, 36, 40). Pathway perturbations identified in
NASH patients were most consistently linked to mecha-
nisms of immune function and extracellular matrix remodeling.

In addition to changes in NAFLD-associated candidate genes, we
confirmed regulation of previously reported genes associated with
extracellular matrix interaction (AEBP1, DPT, EFEMP1, FBLN5,
ITGBL1, LOXL4, THBS2, VCAN), cell division/carcinogenesis
(AKR1B10, C1ORF198, GPC3), apoptosis (PNMA1), and trans-
methylation activity (MAT1A) (3, 35, 45). The extensive regula-
tion of extracellular matrix-associated genes therefore indicates
that a major difference between liver transcriptome profiles in
NAFL and NASH was attributed to the histopathological evi-
dence of fibrosis and not NASH per se.

282
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-20 0 20
PC1 (24%)

PC
2 

(1
3%

)

NAFL
NASH w/o SSH
NASH w/ SSH
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NASH w/SHH 11 8/3 37.5 ± 16.9 173.4 ± 8.3 105.0 ± 23.8 34.9 ± 6.9 110.5 ± 37.9 56.1 ± 22.1 

NASH w/o SHH 5 4/1 41.8 ± 18.6 174.8 ± 11.2 98.3 ± 21.4 31.8 ± 4.4 124.8 ± 74.8 52.2 ± 19.3 

Steatosis
score
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Fig. 3. Liver transcriptome changes in nonalcoholic steatohepatitis (NASH) patients categorized according to presence or absence of Sonic hedgehog (SHH)-positive
hepatocyte staining. A, top: biometrics and blood biochemistry. Data are expressed as means � SD; bottom: semiquantitative evaluation of steatosis, lobular
inflammation, hepatocellular ballooning, and fibrosis. Histopathology was scored on liver biopsy sections according to criteria outlined by the NASH-Clinical Research
Network (25). Differentiation between nonalcoholic fatty liver (NAFL; presence of steatosis in �5% of hepatocytes; activity score �2) and NASH (presence of
hepatocyte ballooning; activity score �2) was performed using the steatosis-activity-fibrosis algorithm (6). Bottom: liver biopsy samples categorized according to
presence (w/SHH) or absence (w/o SHH) of SHH-positive hepatocytes. B: degenerating (ballooning) hepatocyte profiles visualized by conventional hematoxylin-eosin
(H&E) staining vs. immunohistochemical detection of cytokeratin-8/18 (CK-8/18, negative staining) and SHH, positive staining). Arrows denote ballooning hepatocyte
profiles with both SHH-positive and CK-8/18-negative labeling. C: comparison of liver transcriptome profiles in NASH patients with (w/SHH) or without (w/o
SHH)-positive hepatocytes. Left: principal component analysis of samples based on top 500 most variable gene expression levels in 3 NAFLD subgroups. Right:
groupwise comparison of total number of differentially expressed genes (DEGs) in NASH patients with or without SHH compared with NAFL (false discovery rate
�0.05). For a complete list of DEGs detected in the 2 NASH subgroups, see Supplementary Tables S3 and S4.
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Hepatocyte ballooning is considered a defining hallmark of
NAFL progression to NASH (6, 9, 25, 33). Nevertheless, the
term is ill defined and may be associated with weak intra- and
interobserver agreement, which can lead to significant differ-
ences in the grading of NAFLD severity and interpretation of
treatment outcome (6, 23, 25, 56). Reconciling this issue may

potentially be facilitated with the additional use of immuno-
histochemical markers of hepatocyte injury, such as SHH (18,
38) and CK-8/18 (19, 27). We therefore performed a scruti-
nized analysis of hepatocyte injury profiles visualized by dif-
ferent staining procedures. Conventional H&E staining re-
vealed variable distinctiveness of hepatocyte ballooning degen-
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eration in liver biopsies from NASH patients. In contrast,
hepatocyte injury profiles were more clearly and unequivocally
detected when determined by SHH or CK-8/18 immunostain-
ing. Aberrant activation of hedgehog signaling has been im-
plicated in various liver conditions such as inflammation,
fibrosis, and hepatocarcinogenesis (11, 37, 46). Conversely, a
reduced number of SHH-positive hepatocytes has been asso-
ciated with improved NAFLD prognosis (18). Compared
with NAFL, gene expression changes could be detected in
NASH patients only when also accounting for SHH-positive
hepatocyte staining. This distinction resulted in the identi-
fication of extensive liver transcriptome changes in SHH-
positive NASH patients, including genes previously re-
ported regulated in NASH but not, however, detected in our
initial analyses (ANTRX1, CLDN11, EPCAM, MGP, PODN,
STMN2) (3, 35, 45).

Because histopathological disease scoring systems are inher-
ently semiquantitative, we also determined disease-associated
liver histological changes by quantitative means using imag-
ing-based histomorphometry. Biopsies from NAFL and NASH
patients with or without SHH-positive staining showed com-
parable marked increases in the proportionate area of fat, likely
reflecting that almost all NAFLD patients regardless of disease
subtype showed moderate- to severe-grade steatosis deter-
mined by histopathological scoring. Corresponding to the his-
tomorphological evaluation of fibrosis, quantitative analysis of
PSR staining revealed increased collagen deposition only in
NASH, but not in NAFL, patients. As PSR binds to various
collagen isoforms (4), this confirms our RNA sequencing data
that several collagen subtypes contribute to increased collagen
formation during NAFLD progression. Although lobular in-
flammation scores were similar in patients with NAFL and
NASH, only NASH patients showed a significantly elevated
proportionate area of galectin-3 staining and increased galec-
tin-3 mRNA expression. Galectin-3 is produced by several
immune cell phenotypes, in particular, activated macrophages
and lymphocytes (21, 29), and quantitative histomorphology
may therefore provide a more accurate measure of hepatic
immune cell activation that is not accounted for when using
histopathological scoring criteria. Significant quantitative
changes in galectin-3 and PSR staining were observed only in
NASH patients with SHH-positive hepatocyte staining, being
in good agreement with the robust gene expression signature of
aberrant immune function and enhanced fibrogenesis in this
subgroup.

Although the numbers of NAFL and NASH patients were
small, our observation that only SHH-positive samples showed
a discriminatory liver transcriptome and histomorphometric
signature compared with NAFL invites the possibility that
application of additional histological markers of hepatocyte
damage may enable further resolution of molecular changes
associated with the progression of NAFLD. The number of
SHH-positive cells is reported to correlate with the severity of
NASH (18, 31). Our observation that most, but not all, liver
biopsies from NASH patients showed SHH-positive hepato-
cytes may therefore tentatively be ascribed to individual dif-
ferences in disease progression. Limitations in the present
study should be considered. Immunohistochemical stainings
were performed on different biopsy sections than those used
for diagnosing NASH, preventing direct comparison of SHH
staining with corresponding individual diagnostic hepatocyte

ballooning profiles. It should also be noted that the present
study is limited to describing hepatic molecular changes in
NASH patients with relatively low disease severity, necessi-
tating future studies on larger patient cohorts representing
different stages of NASH. Furthermore, as control groups
consisted of males only, it also remains to be addressed in
detail how sex differences may potentially influence gene
expression profiles in NAFL vs. NASH. In addition, study
subjects were nondiabetic and were evaluated only for hepatic
markers; hence, the study conditions do not capture the extent
of extrahepatic molecular changes involved in the pathogenesis
and progression of NAFLD (14).

Conclusions

Liver transcriptome signatures and quantitative changes in
histopathological markers were largely similar in NAFL and
NASH patients; however, they markedly differed from both
healthy normal-weight and obese control individuals. Com-
pared with NAFL, most marked differences in transcriptome
signatures and quantitative histopathological changes mapped
to proinflammatory and fibrogenesis-associated mechanisms.
As extensive molecular changes were specifically identified in
NASH patients with SHH-positive hepatocyte staining, this
suggests the utility of applying immunohistochemical markers
of hepatocyte injury as a more objective diagnostic modality in
the distinction between NAFL and NASH.
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