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ABSTRACT
Individuals with nonalcoholic fatty liver disease (NAFLD) have an altered gut microbiota composi-
tion. Moreover, hepatic DNA methylation may be altered in the state of NAFLD. Using a fecal 
microbiota transplantation (FMT) intervention, we aimed to investigate whether a change in gut 
microbiota composition relates to altered liver DNA methylation in NAFLD. Moreover, we assessed 
whether plasma metabolite profiles altered by FMT relate to changes in liver DNA methylation. 
Twenty-one individuals with NAFLD underwent three 8-weekly vegan allogenic donor (n = 10) or 
autologous (n = 11) FMTs. We obtained hepatic DNA methylation profiles from paired liver biopsies 
of study participants before and after FMTs. We applied a multi-omics machine learning approach 
to identify changes in the gut microbiome, peripheral blood metabolome and liver DNA methy-
lome, and analyzed cross-omics correlations. Vegan allogenic donor FMT compared to autologous 
FMT induced distinct differential changes in I) gut microbiota profiles, including increased abun-
dance of Eubacterium siraeum and potential probiotic Blautia wexlerae; II) plasma metabolites, 
including altered levels of phenylacetylcarnitine (PAC) and phenylacetylglutamine (PAG) both from 
gut-derived phenylacetic acid, and of several choline-derived long-chain acylcholines; and III) 
hepatic DNA methylation profiles, most importantly in Threonyl-TRNA Synthetase 1 (TARS) and 
Zinc finger protein 57 (ZFP57). Multi-omics analysis showed that Gemmiger formicillis and Firmicutes 
bacterium_CAG_170 positively correlated with both PAC and PAG. E siraeum negatively correlated 
with DNA methylation of cg16885113 in ZFP57. Alterations in gut microbiota composition by FMT 
caused widespread changes in plasma metabolites (e.g. PAC, PAG, and choline-derived metabo-
lites) and liver DNA methylation profiles in individuals with NAFLD. These results indicate that FMTs 
might induce metaorganismal pathway changes, from the gut bacteria to the liver.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is 
a spectrum of liver disease ranging from isolated 
steatosis to steatohepatitis (NASH), which can 
eventually progress to NASH-fibrosis, cirrhosis 
and hepatocellular carcinoma.1 NAFLD is esti-
mated to affect 25% of the global population. The 
prevalence of NAFLD rises proportionally with an 
increase in body mass index (BMI), reaching over 

90% in individuals with a BMI of ≥30 kg/m2.2 

Moreover, 55% of individuals with type 2 diabetes 
mellitus (T2DM) have NAFLD.3–5 NAFLD is thus 
regarded as the hepatic component of the meta-
bolic syndrome.6 Individuals with NAFLD are at an 
increased risk of death, with hepatic fibrosis as the 
strongest predictor of mortality. There is also 
a higher incidence of cardiovascular events in indi-
viduals with NAFLD.7,8 Despite this considerable 
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disease burden, to date, no proven or registered 
pharmacotherapy is available to reduce the burden 
of NAFLD.

The gut microbiome is emerging as an interesting 
therapeutic target for metabolic diseases. Gut micro-
biota composition can be modulated by fecal micro-
biota transplantation (FMT),9 a procedure in which 
the feces of a healthy individual is transplanted into 
the gastrointestinal tract of a recipient with the aim 
of restoring a healthy balance of gut bacteria. FMT, 
potentially delivered through oral capsules, could 
become a useful therapeutic strategy for the manage-
ment of metabolic diseases.10

Indeed, changes in gut microbiota composition 
likely have effects beyond the intestine.11 Recent 
data suggest that gut microbiota and gut micro-
biota derived metabolites correlate with epigenetic 
modifications. This is particularly known for DNA 
methylation, an epigenetic modification that has 
been associated with several metabolic diseases, 
including obesity and T2DM.12,13 A recent study 
comparing germ-free and conventionally raised 
mice demonstrated that exposure to commensal 
microbiota significantly increased DNA methyla-
tion at regulatory elements of intestinal genes.14 

Moreover, it has been demonstrated in mice fed 
a high-fat diet that an alteration of gut microbiota 
induced by antibiotics was associated with changes 
in DNA methylation in epididymal fat. In this 
study, the authors observed reduced DNA methy-
lation in the promoter region of the adiponectin 
and resistin genes as well as downregulated expres-
sion of DNA methyltransferases 1 (DNMT1) and 
DNA methyltransferases 3a (DNMT3a).15

The correlation between gut microbiota and 
DNA methylation in metabolic diseases has also 
been shown in humans. In a study on the link 
between the gut microbiota and global DNA 
methylation profiles in obesity, study participants 
were separated into two groups based on their 
Bacteroidetes-to-Firmicutes ratio (high or low). 
Individuals in these two groups had distinct global 
DNA methylation patterns. Differences in methy-
lation of genes involved in glucose and energy 
homeostasis were accompanied by different levels 
of expression, e.g. in Histone deacetylase 7 gene 
(HDAC7) and Insulin – like growth factor protein 
gene (IGF2BP2).16 Guo et al. have demonstrated 
that obesity-prone individuals exhibit diabetes- 

related DNA methylation signatures despite being 
normal in weight and BMI. Moreover, they showed 
that these diabetes-related DNA methylation fea-
tures are transferable through the gut microbiota, 
by performing an FMT from obesity-prone human 
donors to mice.17,18 Our group has previously 
shown that lean donor FMT affects the gut micro-
biome and the DNA methylome of peripheral 
blood mononuclear cells in individuals with the 
metabolic syndrome. More specifically, the intro-
duction of Prevotella species after allogenic FMT 
correlated with methylation of Actin filament-asso-
ciated protein 1 (AFAP), a gene involved in mito-
chondrial function.11

There are a few studies that have reported on 
DNA methylation specifically in NAFLD. Both 
nuclear and mitochondrial DNA methylation 
have been implicated in the pathogenesis of 
NAFLD.19,20 A myriad of epigenetic enzymes, 
such as epigenetic writers, remodelers, readers, 
and in particular epigenetic erasers such as ten- 
eleven translocation (TET) enzymes have been 
associated to NAFLD.21 In diet-induced NAFLD 
mice, Kim et al. showed that changes in the gut 
microbiome after a dietary change correlated to 
persistent modifications in liver DNA methylation, 
suggesting the gut microbiome may play a part in 
altering hepatic DNA methylation in NAFLD.22 

However, there is a lack of studies on the interac-
tion between the gut microbiome and hepatic DNA 
methylation in humans.

Recently, we reported a trend toward improve-
ment of the histological NASH necro-inflammation 
score upon vegan allogenic FMT in individuals with 
NAFLD compared to autologous FMT.23 In the 
current analysis, we employed a multi-omics 
machine learning approach to investigate possible 
mechanisms behind the observed trend. We 
hypothesized that FMT, by changing the gut micro-
biota composition, can alter plasma levels of gut- 
derived metabolites. Moreover, FMT could impact 
liver DNA methylation, either directly or by way of 
an altered metabolite influx from the gut. To our 
knowledge, the effect of FMT on liver DNA methy-
lation has not been studied in humans to date. Here, 
we describe the effects of FMT on gut microbiota 
composition and plasma metabolomics signature, 
after which we analyze the liver DNA methylation 
changes upon vegan allogenic or autologous FMT. 
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Lastly, we use multi-omics correlation analyses to 
investigate the relations between FMT-induced 
changes in gut microbiota, plasma metabolites, and 
liver DNA methylation.

Results

Data from 21 treatment-naïve participants with 
metabolic syndrome and hepatic steatosis on 
ultrasound, treated with either allogenic (n =  
10) or autologous (n = 11) FMT are included 
in these analyses. Participants with a history of 
cardiovascular disease, T2DM, renal disease, 
cholecystectomy or compromised immunity 
were excluded. Included participants did not 
use any medication. The complete inclusion 
and exclusion criteria are given elsewhere.23 

The baseline characteristics of study participants 
are given in Table 1. Importantly, there was no 
significant difference in age, and baseline dietary 
intake was similar between the treatment groups 
(Supplementary Table S1). With regard to 
NAFLD severity at baseline (i.e. percentage of 

steatosis, NAFLD activity score (NAS) and 
fibrosis stage), there were no significant differ-
ences between the groups (Table 1).

Our ML model was able to accurately discri-
minate allogenic from autologous FMT recipi-
ents based on changes in gut microbiota (AUC 
0.78), plasma metabolomics (AUC 0.74) and 
liver DNA methylation profiles (AUC 0.75) 
between time points 0 and 24 weeks 
(Supplementary Figures S1–3). Permutation 
analysis showed that the likelihood that the 
obtained accuracies were due to chance was 
very low (0.88; p < 0.001). The strongest discri-
minative features between the groups in each 
analysis are described in the following sections.

Gut microbial composition changes upon allogenic 
versus autologous FMT

Allogenic and autologous FMT had differential 
effects on the gut microbiota composition of reci-
pients. Paired samples for metagenomics shotgun 
microbiota data before and after FMT were 

Table 1. Baseline characteristics of 21 individuals with biopsy-proven NAFLD. Data is presented as 
mean ± standard deviation, median [interquartile range], or count (percentage). p-values represent 
results of t-test for normally distributed data, Mann-Whitney U tests for non-normally distributed 
data, and Fisher’s exact tests for categorical data.

Autologous FMT 
(n = 11)

Allogenic FMT 
(n = 10) p-value

Age, years 48.5 ± 10.2 51.2 ± 6.6 0.48
Sex, male/female 10/1 7/3 0.31
BMI, kg/m2 31.5 ± 4.8 31.7 ± 3.5 0.91
HbA1c, mmol/mol 37.6 ± 3.8 38.2 ± 3.7 0.70
Glucose, mmol/L 5.7 ± 0.5 5.8 ± 0.7 0.79
AST, IU/L 29.0 [26.5–33.0] 39.5 [37.0–49.5] 0.001
ALT, IU/L 48.1 ± 16.5 70.8 ± 23.4 0.02
ALP, IU/L 83.0 [54.0–120.5] 71.0 [58.8–76.8] 0.67
GGT, IU/L 41.1 ± 21.4 45.1 ± 19.3 0.66
Cholesterol, mmol/L 5.8 ± 1.6 6.0 ± 0.8 0.75
HDL-C, mmol/L 1.2 [1.0–1.4] 1.2 [1.0–1.4] 0.80
LDL-C, mmol/L 4.0 ± 1.3 4.2 ± 0.7 0.71
Triglycerides, mmol/L 1.2 ± 0.6 1.4 ± 0.5 0.41
CRP, mg/mL 2.2 [0.8–4.3] 1.5 [0.9–3.2] 0.50
Steatosis, % 35.0 ± 20.7 34.1 ± 20.4 0.92
NAS score 1 1 (9%) 0 (0.0%) 0.38

2 5 (46%) 4 (40%)
3 4 (36%) 2 (20%)
4 1 (9%) 4 (40%)

Necro-inflammation score 0 1 (9%) 0 (0%) 0.06
1 10 (91%) 6 (60%)
2 0 (0%) 4 (40%)

Fibrosis stage F0 3 (30%) 2 (20%) 1.00
F1 6 (60%) 5 (50%)
F2 2 (20%) 2 (20%)
F3 0 (0%) 1 (10%)

data are expressed as mean ± SD or median [interquartile range], depending on the distribution of the data. ALP: 
Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate transaminase; BMI: Body mass index; CRP: C-reactive 
protein; FMT: Faecal microbiota transplantation; GGT: Gamma-glutamyltransferase; Hba1c: Glycated hemoglobin; 
HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; NAS score: NAFLD activity 
score; T2DM: Type 2 diabetes mellitus.
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available for 17 participants. The top 20 most 
discriminative fecal microbes between the two 
FMT groups are given in Figure 1a. Eubacterium 
siraeum and Blautia wexlerae were increased upon 
allogenic FMT, whereas their abundance was 
unchanged or decreased in most participants 

upon autologous FMT. Contrastingly, 
Lactobacillus delbrueckii decreased in most parti-
cipants upon allogenic FMT, whereas it was 
unchanged or increased upon autologous FMT. 
See Figure 1b for relative differences per bacteria 
upon FMT.

Figure 1. Changes in gut microbiota after vegan allogenic or autologous FMT. (a) Top 20 most discriminative gut microbial strains 
found by the machine learning model. The most important feature is set to 100% with the other features relative to the most 
important feature; (b) Spider plot of relative delta differences in the top 20 microbes between the vegan allogenic and autologous 
FMT groups. The values are rescaled between 0.1 and 1.
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Plasma metabolite changes upon allogenic versus 
autologous FMT

Next, we show that fasting plasma metabolite pro-
files of recipients were distinctly altered upon allo-
genic versus autologous FMT. Paired plasma 
metabolomics data was available for all 21 partici-
pants before and after FMT. Figure 2a depicts the 
top 20 most discriminative metabolites. The two 
most discriminative metabolites between the FMT 
groups were phenylacetylcarnitine and phenylace-
tylglutamine; both are involved in phenylacetate 
metabolism and significantly increased upon allo-
genic FMT whereas they decreased upon 

autologous FMT (Figure 2b). Moreover, several 
metabolites related to glycerolipid metabolism 
were identified as most discriminative between 
allogenic and autologous FMT: glycerol; 1-stear-
oyl-GPG (18:0); palmitoyl-arachidonoyl-glycerol 
(16:0/20:4); 1-palmitoyl-GPG (16:0). Three cho-
line-derived metabolites were among the top 20 
most discriminative metabolites between the 
groups, i.e. stearoylcholine, palmitoylcholine and 
oleoylcholine. Plasma levels of these metabolites 
increased after autologous FMT, whereas they 
remained largely unchanged in allogenic FMT 
recipients.

Figure 2. Changes in plasma metabolites after vegan allogenic or autologous FMT. (a) Top 20 most discriminative plasma metabolites 
found by the machine learning model. The most important feature is set to 100% with the other features relative to the most 
important feature; B (1): Boxplot of phenylacetylglutamine B (2): Boxplot of phenylacetylcarnitine.
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Liver DNA methylation changes upon autologous 
versus allogenic FMT

Paired liver DNA methylation profiles before and 
after FMT were available for 20 participants. The 
top 20 differentially methylated CpGs (dmCpGs) 
that together were most important for distinction 
between treatment groups are shown in Figure 3. 
The top-ranked dmCpG was cg02068164 within 
the transcription start site 1500 (TSS1500) of 
Threonyl-TRNA Synthetase 1 (TARS) which 
decreased in methylation upon allogenic FMT.

Within Late Cornified Envelope 3C (LCE3C) 
cg21718113, in the TSS1500, fourth in relative 
importance methylation also decreased upon allo-
genic FMT. Moreover, there was a trend toward 
hypermethylation in the allogenic versus hypo-
methylation in the autologous FMT group of 
cg06872548 in Regulatory Associated Protein Of 
MTOR Complex 1 (RPTOR), on chromosome 17.

Multiple loci within Zinc finger protein 57 
(ZFP57) on chromosome 6 were in the top 20 
dmCpGs, showing decreased in methylation upon 
allogenic FMT (Supplementary Figure S4a, b).

Multi-omics correlations

Finally, we analyzed multi-omics correlations 
between liver DNA methylation, plasma metabo-
lites and fecal microbiota before and after FMT. 

A spearman correlation (cutoff <−0.6/>0.6) was 
applied to integrate the top 20 features from each 
omics set (DNA methylomics, metagenomics and 
metabolomics) and find multi-omics interactions 
upon FMT. The correlation plot depicted in 
Figure 4 shows which features were correlated 
with each other; the line thickness represents the 
strength of the association, and the color represents 
the direction of the correlation (between red for 
positive and blue for negative). We found that 
E. siraeum, the most discriminative feature from 
the metagenomics analysis, was negatively corre-
lated with cg16885113 in ZFP57. As for plasma 
metabolites, it was notable that the phenylacetate 
metabolites (phenylacetate, phenylacetylcarnitine, 
phenylacetylglutamate, and phenylacetylgluta-
mine) all correlated positively with the intestinal 
bacterial species Firmicutes bacterium CAG 170 
and Gemminger formicilis, suggesting these 
microbes may function as phenylalanine conver-
ters. Not surprisingly, there were also strong corre-
lations between these metabolites themselves.

The most important feature from the liver 
DNA methylation analysis, cg02068164 within 
the TARS gene, was negatively associated with 
the metabolite glycerol. As for microbe-epige-
netic correlations, Blautia wexlerae was positively 
associated with DNA methylation at cg12219707, 
in the 3’UTR of the P21 (RAC1) Activated Kinase 
1 (PAK1) gene and negatively correlated with 

Figure 3. Top 20 most discriminative methylation changes in CpG sites in the liver after vegan allogenic or autologous FMT found by 
the machine learning model. The most important feature is set to 100% with the other features relative to the most important feature.
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cg10596483 annotated to the Jrk Helix-Turn- 
Helix Protein (JRK) gene. This last dmCpG was 
also positively correlated with abundance of 
Bacteroides eggerthi.

When studying the relation of the identified 
most discriminative dmCpGs with liver histology 
data of the participants, we found a correlation 
between cg16885113 in ZFP57 and hepatocyte bal-
looning at baseline (Supplementary Figure S5).

Discussion

Using a multi-omics approach, we have deeply 
characterized the changes that occur in the micro-
biome, metabolome, and – uniquely – liver DNA 
methylome, upon allogenic vegan donor versus 
autologous FMT in individuals with NAFLD. We 

have identified correlations between liver DNA 
methylation, gut microbes, metabolites, and histo-
logical features of NAFLD.

ML models can be used to address highly com-
plex biological datasets and have previously in epi-
genetic studies.24 Here, we used ML to distinguish 
between the two intervention groups. It is impor-
tant to note that the combination of all variables in 
each multi-omic dataset is used to make this dis-
tinction, and therefore specific variables may not 
be strongly related to either group when considered 
individually. To identify relevant changes upon 
FMT, we looked into the top 20 most discrimina-
tive features from each ML model. We identified 
several variables that may be of interest in micro-
biota-mediated effects on the liver of individuals 
with NAFLD.

Figure 4. Multi-omics correlations of differentially altered features between vegan allogenic and autologous FMT. The top 20 most 
discriminatives gut microbial strain (green nodes), plasma metabolites (orange nodes) and differentially methylated CpGs (blue nodes) 
are displayed. The size of the nodes represents the number of correlations. Line thickness and colour depicts direction and strength of 
correlation (blue: positive correlation; red: inverse correlation), based on Spearman correlation coefficients (ρ).
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Vegan FMT increases abundance of Blautia 
wexlerae, a potential anti-obesogenic probiotic

Among the top differentially altered microbes, 
E. siraeum and B. wexlerae both increased in abun-
dance after vegan allogenic FMT. E. siraeum has 
previously been linked to NAFLD, and in non- 
human primates its abundance was positively corre-
lated with high-density lipoprotein cholesterol 
levels.25,26 In our study, we observed an inverse cor-
relation between changes in E. siraeum abundance 
and methylation of cg16885113 in ZFP57, further 
discussed below. B. wexlerae is a strictly anaerobic 
bacterium that has potential probiotic properties, 
including the production of bactericins that inhibit 
the colonization of pathogenic bacteria.27 Blautia spe-
cies, especially B. wexlerae and B. luti, are depleted in 
the gut microbiota of children with obesity.28 Blautia 
abundance has been found to increase in individuals 
with NAFLD who started a hypocaloric high protein 
diet.29 A recent Japanese cross-sectional cohort study 
showed that the abundance of B. wexlerae was inver-
sely correlated with obesity and T2DM. The authors 
subsequently showed that oral administration of 
B. wexlerae to mice on a high-fat diet led to decreased 
body weight and improved insulin sensitivity.30 Our 
findings indicate that B. wexlerae abundance 
increases after vegan donor FMT and it may thus be 
a transferable microbe from a vegan diet.

Vegan FMT increases hepatic production of 
phenylacetate metabolites

Plasma levels of the metabolites phenylacetylgluta-
mine (PAG) and phenylacetylcarnitine (PAC) 
increased in study participants after receiving allo-
genic FMT as compared to autologous FMT. The 
presence of the gut bacteria Gemmiger formicillis 
and Firmicutes bacterium_CAG_170 was positively 
associated with these two metabolites. Both PAG 
and PAC are produced in the liver during the 
degradation of phenylacetic acid, which is derived 
from microbial catabolism of phenylalanine in the 
gut.31 The role of phenylacetic acid in inducing 
mitochondrial dysfunction and hepatocyte lipid 
accumulation is currently under investigation.32 

PAG has been suggested to promote cardiovascular 
disease via signaling in adrenergic receptors, yet 
urinary PAG has been positively correlated with 

microbial gene richness in individuals with 
obesity.33,34 A recent study employing a network 
pharmacology approach identified PAG as 
a distinctive feature of NAFLD, suggesting it may 
be a biomarker for hepatic dysfunction.35 PAC is 
involved in fatty acid transport into the 
mitochondria.36 It has been shown that conversion 
of mitochondrial acetylcarnitine to acetyl-CoA in 
the nucleus provides a source of acetyl groups for 
histone acetylation.37 Whether PAC is involved in 
these epigenetic processes requires further 
investigation.

Choline-derived metabolites are increased after 
autologous FMT

Our analyses revealed differential changes in 
plasma levels of three long-chain acylcholines (i.e. 
stearoylcholine, palmitoylcholine and oleoylcho-
line) between the autologous and allogenic FMT 
recipients. Acylcholines are products of choline 
metabolism, which primarily takes place in the 
liver. Choline is an essential nutrient that is mostly 
obtained through diet, and plasma levels of cho-
line-derived metabolites are influenced by gut 
microbial composition.38,39 Importantly, it is 
known that choline deficiency contributes to non-
alcoholic fatty liver disease, as phosphatidylcholine 
plays a critical role in the assembly of very low- 
density lipoprotein (VLDL) particles that are essen-
tial in transporting fat and cholesterol from the 
liver.40,41 Another choline metabolite, trimethyla-
mine N-oxide (TMAO), is a widely known harmful 
microbial product associated with an increased risk 
of cardiovascular disease.38,42 Interestingly, choline 
acts as a methyl donor, and some studies have 
shown that choline availability has a large impact 
on DNA methylation.38 However, we did not iden-
tify correlations between these acylcholines and 
specific CpG sites in the liver in our multi-omics 
analysis. Our data support previous studies that 
suggest a link between microbial composition and 
the production of acylcholines.41,43,44

Our findings that plasma levels of microbial- 
derived metabolites (i.e. phenylacetate and choline 
metabolites) are differentially altered between parti-
cipants receiving allogenic versus autologous FMT 
indicate that FMT can induce metaorganismal path-
way changes from the gut bacteria to the liver.
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Furthermore, several plasma metabolites related 
to glycerolipid metabolism were differentially 
altered between allogenic and autologous FMT 
receivers. Glycerol is released from white adipose 
tissue as a result of lipolysis, and its flux to the liver 
initiates hepatic gluconeogenesis.45 In NAFLD, 
adipose tissue insulin resistance increases lipolysis 
and the glycerol flux to the liver, increasing hepatic 
gluconeogenesis.46 Alterations in glycerol levels 
and its related metabolites after FMT may thus be 
indicative of changes in these metabolic processes.

FMT affects hepatic DNA methylation

Our analyses identified multiple dmCpGs in the 
liver following allogenic or autologous FMT. The 
top feature was hypermethylation of cg02068164 in 
TARS in the autologous group, while it was hypo-
methylated in the allogenic group. TARS is 
a protein that is essential for gene translation, as 
it catalyses the covalent binding of threonine to 
tRNA during the process of adding amino acids 
to the polypeptide chain.47 Although TARS is not 
tissue specific, it has been shown to be expressed in 
the liver.48 RPTOR was another gene in which we 
identified dmCpGs. RPTOR encodes mTOR, 
a regulator of liver autophagy in multiple liver 
diseases, including NAFLD.49 Notably, multiple 
dmCpGs in ZFP57 were identified among the top 
most important features. ZFP57 belongs to the 
KRAB zinc finger proteins group and is 
a regulator of the epigenetic process of 
imprinting.50 Mutations in ZFP57 are associated 
with an imprinting disorder in which DNA methy-
lation is altered, causing transient neonatal 
diabetes.51 This phenomenon of multiple CpGs 
within the same gene has not been seen in previous 
studies. While it is yet unclear how these changes 
will affect disease progression, these findings sug-
gest that ZFP57 may act as a hepatic regulator in 
response to gut microbiota-derived signals.

Strengths and limitations

To our knowledge, this is the first study to investi-
gate the impact of FMT on liver DNA methylation 
in humans, in the context of NAFLD or any other 
liver condition. With this work, we demonstrate that 
multivariate omics models can be utilized to identify 

relevant CpG sites that are differentially methylated 
and to correlate multi-omics changes between FMT 
groups in participants with NAFLD. A key strength 
of this study is the use of liver biopsy specimens for 
DNA methylation analysis, eliminating the need to 
use surrogate tissue (such as commonly used per-
ipheral blood mononuclear cells) to infer epigenetic 
changes. Moreover, because the FMT groups were 
well matched in age and participants were all treat-
ment-naïve, we were able to analyze samples without 
age- or medication bias, two factors known to affect 
both gut microbiota composition and epigenetic 
marks. Furthermore, other potential confounders, 
such as dietary intake or NAFLD severity, were 
well matched between groups. However, it is impor-
tant to note that the sample sizes were small, and 
therefore this study should be viewed as a conceptual 
work. Devoted clinical trials are necessary to con-
firm the associations noted in this study. Since 
paired samples from each participant before and 
after the intervention were compared, we did not 
have to account for genetic (cis) associations within 
the analyses. As the field of epigenetics is quickly 
expanding, there are several aspects that we did not 
address in this work. While our study investigated 
overall DNA methylation profiles in the liver, it 
would be highly interesting to explore alterations 
in single-cell DNA methylation in the liver to iden-
tify specific cell types involved in the epigenetic 
changes described here. Moreover, differentiating 
methylation from de-methylation could provide 
further insights into the epigenetic changes that 
occur after FMT. Additionally, it should be noted 
that DNA methylation is only one of the epigenetic 
tools that can affect the transcription machinery, 
and that some genes may still be transcribed despite 
being in a methylated state.52 Exploring the cross- 
talk between different epigenetic markers and inves-
tigating mitochondrial DNA methylation could also 
provide further insights into the epigenetic mechan-
isms at play. Finally, while our analyses specifically 
focused on gut bacteria, other components of the 
microbiome such as bacteriophages may also influ-
ence metabolic processes after FMT.

Conclusions

Manipulation of the gut microbiome through FMT 
can alter plasma levels of microbial metabolites, 

GUT MICROBES 9



such as phenylacetate- and choline-derived meta-
bolites, as well as liver DNA methylation in indivi-
duals with NAFLD. Distinct multi-omics relations 
exist between gut microbiota, plasma metabolites 
and liver DNA methylation. This lends support to 
further therapeutic exploration of the gut-liver axis 
in treatment development for NAFLD.

Material and methods

This is a post-hoc analysis of liver DNA methy-
lation, fecal metagenomics and plasma metabo-
lomics alterations in a single-center, double- 
blind, randomized controlled study in which 
the effect on histologically assessed NAFLD of 
three 8-weekly lean vegan donor (allogenic; n =  
10) FMTs was compared to own (autologous; n  
= 11) FMTs using paired liver biopsies (trial 
registration no.: NL4189-NTR4339).23 This 
study was approved by the Amsterdam Medical 
Centers ethics committee (AMC METC 
2013_207). All participants provided written, 
informed consent.

Liver biopsies were performed for the purpose of 
this research, as this is currently the reference stan-
dard for the diagnosis of NAFLD.53 The age- 
matched recipients of allogenic or autologous 
FMTs were Caucasian, overweight (BMI >25 kg/ 
m2), treatment – naïve and omnivorous individuals 
with hepatic steatosis determined by ultrasound. 
Study participants were asked to record their food 
intake for 7 days before the first FMT visit. Liver 
biopsies, fasting plasma, and fecal samples were 
collected at baseline and at 24 weeks, and stored 
for analyses as previously described.23 A schematic 
overview of the number of participants included in 
each analysis is shown in Table 1.

Faecal metagenomics

Fecal samples were collected at baseline and at 24  
weeks after start of treatment. Gut microbial DNA 
was isolated from fecal samples using the Maxwell® 
16 Instrument (Promega, Leiden, The 
Netherlands). Microbial DNA was analyzed for 
microbiome composition by shotgun metage-
nomics sequencing. Raw reads were checked and 
quality-filtered using fastp (v.0.20.0).54 Here, the 
adapter was detected and removed, 5 bp in front 

for read1 was trimmed, and sliding window quality 
trimming was applied (with a window width of 4 
bp and threshold Q-score of 15). After trimming 
and adapter removal, reads shorter than 70 bp were 
removed. Paired-end reads that passed the quality 
filtering were then mapped against the human 
genome (hg19) using Bowtie 2 (v.2.4.1).55 The set-
tings include very-sensitive and inclusion of dove-
tail, where mates extend past each other. SAMtools 
(v.1.9) was used to convert SAM to BAM and to 
remove the reads that were mapped to the human 
genome. Sambamba (v.0.7.1) was used hereafter to 
sort the unmapped reads by name with a memory 
limit of 40 gigabytes. BEDtools (v.2.27.1) was used 
to convert the sorted unmapped reads to forward 
and reversed fastq format reads.56–58 The remain-
ing high‐quality, non-human reads were sub-
sampled to 20 million paired‐end reads per 
sample using seqtk (v.1.3r106). The forward and 
reversed reads are concatenated and fed to the 
HUMAnN3 pipeline (v.3.0.0.alpha.3).59 For each 
sample, species‐level microbial composition with 
viruses added in relative abundance was inferred 
using MetaPhlAn3 (v.3.0.2).59 After mapping the 
reads against the pangenomes selected based on 
inferred composition (using Bowtie 2), unmapped 
reads were translated and mapped against the full 
UniRef90 protein database using DIAMOND 
(v.0.9.32).60 MetaCyc pathway community‐level 
abundance was normalized to copies 
per million (CPM).

Plasma metabolomics

Fasting EDTA plasma samples were taken at 
both time points and analyzed by 
METABOLON (Morrisville, NC, USA) for 
ultra-high-performance liquid chromatography 
coupled to tandem mass spectrometry (LC-MS/ 
MS) untargeted metabolomics, as previously 
described.61 To minimize the effect of artifacts 
in the downstream analysis, metabolomics 
intensities underwent heavy curation by pre-fil-
tering, including missing data imputation, and 
normalization of data values. This was per-
formed using a Perseus platform. Originally, 
METABOLON measured 1299 metabolites, and 
after removing unknown metabolites, 1022 
metabolites underwent imputation and 
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normalization for further analysis. Per metabo-
lite, the median value was scaled to one and 
samples below detection threshold were imputed 
with the lowest measured value. Filtering for 
xenobiotics resulted in 805 metabolites for 
Machine Learning (ML) modeling. Differential 
analysis was conducted with two methods: 
ANOVA and Kruskal Wallis.

Liver DNA isolation and DNA methylation profile

DNA was isolated from liver biopsies taken at 
baseline and 24 weeks, see Supplementary 
Methods for details. DNA methylation profiles 
were generated using the Illumina Infinium 
MethylationEPIC BeadChip 850k array. Quality 
control and pre-processing of DNA methylation 
data was performed in R Studio (v3.5.1) using the 
Bioconductor (v3.7) packages minfi (v1.26.2) for 
import, functional normalization for normaliza-
tion, MethylAid (v1.14.0) and shinyMethyl 
(v1.16.0) for quality control.62,63 Samples were 
included for further analysis if they passed default 
MethylAid parameter thresholds and were not 
outliers according to principal component analy-
sis. Probes were excluded from the analyses if 
they were suspected to be promiscuous.64 Since 
both male and female participants were present in 
the cohort, all probes annotated to allosomes 
were removed. Furthermore, probes were 
excluded if their gene body or CpG of interest 
overlapped with a known SNP with a minor allele 
frequency >1% per the included Illumina mani-
fest annotation file, or when probes were sup-
posed to include unknown genetic variation 
detected through implementation of the gaphun-
ter function (threshold 20%, >2 clusters) available 
under minfi.65

Machine learning

We applied a classification algorithm to identify 
which parameters (delta values as relative changes 
between point 0 and 24 weeks) best predicted allo-
cation of treatment groups, that is, autologous or 
allogenic FMT.66 For each -omics modality 
(microbes, metabolites, and CpGs), a model was 
deployed. Features were filtered prior to each simu-
lation on the different -omics modality to reduce 

dimensionality. First, an unsupervised variance 
threshold was applied, removing features which 
show low variation, independent on the treatment 
group. For microbes, metabolites and CpGs, 
a variance threshold of 0.01, 0.25, and 0.027 was 
utilized, respectively. Hereafter, a univariate feature 
selection was applied (35%, 20%, and 1% for 
microbes, metabolites and CpGs, respectively), 
resulting in 41, 49, and 82 features for the micro-
bial, metabolic, and CpG modality, respectively.

Within each ML simulation, the models were 
constructed with the same stability selection pro-
cedure to ensure robust results and prevent 
overfitting.67 For this, we reshuffled the order of 
the samples in the original dataset 100 times. After 
each shuffle, the dataset was split up in a training- 
and testing dataset, with the division of 80/20. 
Within the training dataset, a three-fold cross-vali-
dation was applied to tune the hyper parameters of 
the model and to improve accuracy and control for 
overfitting. The number of trees used was 2000. 
Performance of the different models was estimated 
via an area under the curve (AUC) of the test 
dataset to distinguish allogenic FMT receivers 
from the autologous FMT control group. The 
final performance metric is a mean AUC with 
standard deviation and a mean feature importance 
over the different shuffles. The ML pipeline was 
implemented in python v 3.7.7, using the scikit- 
learn (v 0.23.1) package.68

Statistical analyses

T-tests or Mann-Whitney U tests were performed 
to detect differences in baseline characteristics, 
depending on normality of the data distribution. 
Differences in distribution of categorical para-
meters between the groups at baseline were tested 
by Fisher’s exact tests. Boxplots distinguishing the 
autologous- from allogenic FMT group were ana-
lyzed using the Mann-Whitney U test. Correlations 
between DNA methylation loci and clinical scores 
(e.g., steatosis grade, ballooning, fibrosis grade, 
NAS score and inflammation score) and between 
the different -omics modalities were analyzed using 
the Spearman rank correlation. A p-value below 
0.05 was considered statistically significant. The 
statistical analyses were performed using 
R version 4.0.2
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