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Abstract

Fibroblast growth factor 21 (FGF21) plays a key role in hepatic lipid metabolism and long-acting FGF21 analogs have emerged as
promising drug candidates for the treatment of nonalcoholic steatohepatitis (NASH). It remains to characterize this drug class in
translational animal models that recapitulate the etiology and hallmarks of human disease. To this end, we evaluated the long-
acting FGF21 analog PF-05231023 in the GAN (Gubra Amylin NASH) diet-induced obese (DIO) and biopsy-confirmed mouse
model of NASH. Male C57BL/6J mice were fed the GAN diet high in fat, fructose, and cholesterol for 34 wk before the start of
the study. GAN DIO-NASH mice with biopsy-confirmed NAFLD Activity Score (NAS �5) and fibrosis (stage �F1) were biweekly
administered with PF-05231023 (10 mg/kg sc) or vehicle (sc) for 12 wk. Vehicle-dosed chow-fed C57BL/6J mice served as
healthy controls. Pre-to-post liver biopsy histopathological scoring was performed for within-subject evaluation of NAFLD Activity
Score (NAS) and fibrosis stage. Terminal endpoints included quantitative liver histology and transcriptome signatures as well as
blood and liver biochemistry. PF-05231023 significantly reduced body weight, hepatomegaly, plasma transaminases, and
plasma/liver lipids in GAN DIO-NASH mice. Notably, PF-05231023 reduced both NAS (�2-point improvement) and fibrosis stage
(1-point improvement). Improvements in NASH and fibrosis severity were supported by reduced quantitative histological markers
of steatosis, inflammation, and fibrogenesis as well as improvements in disease-associated liver transcriptome signatures. In con-
clusion, PF-05231023 reduces NASH and fibrosis severity in a translational biopsy-confirmed mouse model of NASH, supporting
development of FGF21 analogs for the treatment of NASH.

NEW & NOTEWORTHY It is unclear if long-acting FGF21 analogs have antifibrotic efficacy in NASH. We therefore profiled the
clinically relevant FGF21 analog PF-05231023 in a translational diet-induced obese and biopsy-confirmed mouse model of
NASH. We found PF-05231023 to exert hepatoprotective effects as indicated by notable improvements in plasma markers and
histological hallmarks of NASH, including improved fibrosis stage. Collectively, the present study supports the continued explora-
tion of long-acting FGF21 analogs for the treatment of NASH and other fibrotic diseases.

fibroblast growth factor 21; fibrosis; liver biopsy; nonalcoholic steatohepatitis; translational model

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most
common cause of chronic liver disease in the Western
world and a major risk factor for cirrhosis and hepatocellu-
lar carcinoma (1). The prevalence of NAFLD is rising in
parallel with the global increase in obesity and type 2 dia-
betes, which are major risk factors for the onset and pro-
gression of the disease. The most severe form of NAFLD,
nonalcoholic steatohepatitis (NASH), is characterized by
steatosis, lobular inflammation, and hepatocyte injury
(ballooning) with or without fibrosis (2). Currently, there
exist no FDA-approved medications for NASH, making
liver transplantation the only available curative treatment

option for cirrhosis. The unmet need for effective treat-
ments has prompted intense target discovery research,
and multiple drug development programs are at various
stages of clinical development (3).

Fibroblast growth factor 21 (FGF21) is a peptide hormone
primarily expressed and secreted from the liver (4). The bio-
logical actions of FGF21 are mainly mediated through bind-
ing to the FGF receptor 1 (FGFR1), and to a lesser extent
FGFR2, FGFR3, and FGFR4, in conjunction with the obligate
coreceptor b-klotho (KLB) (4). Accumulating evidence points
to a wide range of metabolic functions of FGF21 that vary by
species. These include regulation of energy balance and glu-
cose and lipid homeostasis as well as the mediation of inter-
organ metabolic cross talk, conferring beneficial actions in
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obesity, type 2 diabetes, and related comorbidities, including
NAFLD (5, 6).

The metabolic effects of FGF21 are mediated at both the
peripheral and central levels. Peripheral actions include tar-
geting adipose tissue to increase glucose uptake (7, 8), lipid
disposal (9), and adiponectin secretion (10). At the central
level, rodent studies have pointed to FGF21-induced adipose
tissue browning and thermogenesis by stimulation of para-
ventricular hypothalamic sympathetic activity (11). FGF21
has also consistently been reported to modulate food intake,
sugar preference, and alcohol consumption by targeting
KLB-expressing neurons in the basolateral amygdala and
suppressing mesolimbic dopaminergic neurotransmission
(12, 13). The role of FGF21 in regulating liver metabolism is
complex and incompletely understood due to intercon-
nected FGF21-producing target tissues and organs as well as
the endocrine, paracrine, and autocrine functions of FGF21
(4). The hepatic effects of FGF21 are likely afforded by a com-
bination of intrahepatic and extrahepatic mechanisms
involving direct hepatocyte metabolic actions, stimulation
of adipocyte-secreted adiponectin, and brain-liver cross talk
to promote body weight loss with concurrent improvements
in glycemic control and lipid profile (4, 5).

The clinical use of native FGF21 is limited due to its short
circulating half-life (30 min to 2 h) (14). To circumvent this li-
mitation, long-acting FGF21 analogs have been developed and
evaluated in clinical trials for the treatment of metabolic dis-
eases including obesity, type 2 diabetes, dyslipidemia, and
NAFLD. These studies have consistently reported reductions
in levels of triglycerides (TGs) and total cholesterol (TC) and
increased levels of high-density lipoprotein cholesterol (HDL-
C) and adiponectin (14–18). Moreover, improvement of liver fi-
brosis and stiffness biomarkers have been shown in response
to treatment with FGF21 analogs Pegbelfermin and AKR-001
in human NASH and patients with type 2 diabetes (18, 19).
To improve pharmacokinetics of FGF21, several approaches
such as Fc fusion (19), PEGylation (20), introduction of di-
sulfide bonds (21), and antibody conjugation (22) have been
employed. For example, the FGF21 analog PF-05231023 has
been engineered for extended half-life and bioavailability
by conjugating two recombinant human FGF21 proteins to
the Fab region of human immunoglobulin G (22).

In genetic and diet-induced mouse models of obesity, the
administration of FGF21 analogs has been demonstrated to
drive robust reductions in body weight and adiposity while
also improving glycemic control, insulin sensitivity, and lev-
els of triglycerides and cholesterol (14). In the context of
NAFLD, administration of FGF21 analogs consistently reduce
hepatic steatosis and inflammation in a diverse set of diet-
induced, genetically modified, or chemically induced rodent
models of NASH (14). In support of therapeutic effects of
FGF21 in NAFLD, FGF21 deficiency worsens the NASH phe-
notype inmice (23, 24).

To date, therapeutic benefits of FGF21 analogs have only
been reported in nonphysiological models of NASH such as
genetically and chemically induced mouse models (25–28).
Given the therapeutic potential of FGF21 analogs in NASH,
it is important to characterize these analogs in a more clin-
ically translational animal model. A novel high-caloric
diet-induced obese and biopsy-confirmed mouse model of
progressive NASH and fibrosis has recently been profiled

extensively with respect to human translatability. Accordingly,
the GAN (Gubra Amylin NASH) diet-induced obese (DIO)
and biopsy-confirmed mouse model of NASH recapitulates
the various histological stages of NASH with progressive fi-
brosis (29–38). The GAN diet closely resembles the AMLN
diet (29), which has been extensively validated for inducing
a clinical translational metabolic and histopathological
phenotype in mice (39–42). Correspondingly, GAN DIO-
NASHmice demonstrate a consistent obese and dysmetabolic
profile characterized by impaired glucose tolerance, hyperin-
sulinemia, increased HOMA-IR index (a valid measure of sys-
temic insulin resistance) as well as hypercholesterolemia and
hyperleptinemia (30, 31). Normal baseline glucose levels in
the context of hyperinsulinemia in GAN DIO-NASHmice sug-
gest pancreatic b-cell compensation (30) and an insulin-resist-
ant phenotype (30, 31). Importantly, the GAN DIO-NASH
model faithfully reproduces histological efficacy profiles of
compounds in advanced clinical development for NASH (29–
31, 43) thus representing an attractive model for exploring
FGF21 pharmacological intervention. PF-05231023 has been
reported to exert both body weight-dependent and -independ-
ent metabolic effects in patients with diabetes and obesity
(44, 45). Although these data have been corroborated in
mouse and nonhuman primate studies (46, 47), it is not
known if themetabolic benefits of PF-05231023 could translate
into beneficial effects in NASH. The present study therefore
aimed to profile PF-05231023 in the GANDIO-NASHmouse.

METHODS

Ethics

All animal experiments were approved by The Danish
Animal Experiments Inspectorate (License No. 2017-15-
0201–01378). Animal experiments were conducted in agree-
ment with internal Gubra bioethical guidelines that are fully
compliant with internationally accepted principles for the
care and use of laboratory animals.

Animals

C57BL/6Jmice (5 wk old) were purchased from Janvier Labs
(Le Genest, Saint Isle, France) and housed in a controlled envi-
ronment (12 h light/dark cycle, lights on at 3:00 AM, 21±2�C,
humidity 50±10%). Each animal was implanted with a
subcutaneous microchip (PetID Microchip, E-vet, Haderslev,
Denmark) for identification. Animals had ad libitum access to
tap drinking water and chow (3.22 kcal/g, Altromin 1324,
Brogaarden, Hoersholm, Denmark) or Gubra Amylin NASH
diet [GAN diet, 4.49 kcal/g, 40 kcal-% fat (of these 46% satu-
rated fatty acids by weight), 22% fructose, 10% sucrose, 2%
cholesterol; D09100310, Research Diets] (29) for 34 wk before
treatment start and maintained on the diet throughout the
12-wk study period. Mice were euthanized by cardiac
puncture under isoflurane anesthesia (Vetflurane, Virbac,
Kolding, Denmark).

Baseline Liver Biopsy

Mice were subjected to a liver biopsy, as previously
described in detail (40). In brief, animals were anesthetized
with isoflurane, and a midline abdominal incision was per-
formed exposing the left lateral lobe. A cone-shaped biopsy
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of �50 mg liver tissue was collected, cut surfaces were elec-
trocoagulated using an electrosurgical unit (ERBE VIO 100
C, ERBE,Marietta, GA), the liver was returned to the abdomi-
nal cavity, and the abdominal wall was sutured and the skin
was stapled. Mice received 5 mg/kg carprofen (Norodyl,
ScanVet, Fredensborg, Denmark) before surgery and on day
1 and 2 postsurgery. Animals were single-housed after the
operation and allowed to recover for 4 wk before the start of
treatment.

Treatment Intervention

Study inclusion criteria for GAN DIO-NASH mice were bi-
opsy-confirmed NAFLD Activity Score (NAS �5) and the
presence of fibrosis (stage �F1), evaluated by standard clini-
cal histopathological scoring criteria as outlined by Kleiner
et al. (48). Subsequently, animals were randomized and
stratified to treatment based on fibrosis proportionate per-
cent area of picrosirius red (PSR) staining. GAN DIO-NASH
mice were biweekly administered (SC) vehicle or the FGF21
analog PF-05231023 for 12 wk (n = 14/group). Chow-fed mice,
serving as lean controls, received saline vehicle (Chow vehi-
cle, subcutaneous) for 12 wk (n = 6). PF-05231023 was dis-
solved in phosphate-buffered saline. Vehicle and FGF21 were
administered in a dosing volume of 5 mL/kg. Body weight
was measured daily and 24 h food intake was measured once
weekly during the treatment intervention period.

Plasma and Liver Biochemistry

Blood was collected from the tail vein on the morning
of termination, kept on ice, and centrifuged (5 min, 4�C,
6,000 g) to give EDTA-stabilized plasma. Plasma alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
triglycerides (TGs), total cholesterol (TC), and liver TG and
TC were determined as described previously (41). For
hydroxyproline (HP) determination, quick-frozen liver tissue
(100mg) was homogenized in 6 MHCl and hydrolyzed to de-
grade collagen. Hydroxyproline content was then measured in
the supernatant using a colorimetric kit (Cat. No. QZBHYPRO5,
Quickzyme Biosciences, Leiden, TheNetherlands) according to
themanufacturer’s instructions.

Liver Histology

Baseline liver biopsy and terminal biopsy, both sampled
from the left lateral lobe, were fixed overnight in 4% parafor-
maldehyde. Tissue was paraffin-embedded and sectioned at
3lm thickness. Liver biopsy sections were stained with he-
matoxylin-eosin (HE, Dako, Glostrup, Denmark), picrosirius
red (PSR, Sigma Aldrich, Brondby, Denmark), anti-galectin-3
(Gal-3, Cat. No. 125402, BioLegend, San Diego, CA), anti-
type I collagen (Col1a1, Cat. No. 1310-01, Southern Biotech,
Birmingham, AL), or a-smooth muscle actin (a-SMA, Cat.
No. Ab124964, Abcam, Cambridge, UK) according to
standard protocols (40, 41). See Supplemental Table S1
(see https://doi.org/10.6084/m9.figshare.21424488.v1) for
further details on the histological staining procedures.
Histopathological scoring of steatosis, lobular inflammation,
hepatocyte ballooning, and fibrosis staging was performed
by Gubra Histopathological Objective Scoring Technique
(GHOST) automated deep learning-based image analysis (31)
using the NASH Clinical Research Network (CRN) scoring

system (48). NAS and fibrosis stages were compared with
baseline scores for within-subject evaluation of treatment effi-
cacy. GHOST deep learning-based image analysis was further
applied for histomorphometric assessment of histopathologi-
cal scoring-associated variables, including fraction of lipid-
laden hepatocytes (%), number of inflammatory foci (foci/
mm2), and percent proportionate area fibrosis. In addition,
quantitative histology was performed using a digital imaging
software (Visiomorph, Visiopharm, Hørsholm, Denmark) for
the determination of liver fat (HE-staining), fibrosis (PSR,
Col1a1), inflammation (galectin-3), and activated stellate cells
(a-SMA) expressed relative (%) to total sectional area. To
account for changes in liver mass resulting from treatment
intervention, the percent area of positive staining was multi-
plied with the corresponding total liver weight as an estimate
of total livermarker content (mg); a procedure previously vali-
dated to be representative of whole liver histological changes
in obesemousemodels of NASH (49).

RNA Sequencing

RNA was extracted from snap-frozen terminal liver sam-
ples (�20 mg fresh tissue) and liver transcriptome analysis
was performed by RNA sequencing analysis, as previously
described in detail (30, 31). RNA sequence libraries were pre-
pared using NeoPrep (Illumina, San Diego, CA) and the
Illumina TruSeq stranded mRNA Library kit for NeoPrep
(Illumina, San Diego, CA) and sequenced using the NextSeq
500 (Illumina, San Diego, CA) with NSQ 500 hi-Output KT v2
(75 CYS, Illumina, San Diego, CA). The reads were aligned to
the GRCm38 v84 Ensembl Mus musculus genome by apply-
ing the STAR v.2.5.2a with default parameters. The lower
detection limit for gene expression was set at 0.1 RPKM.
Differential gene expression analysis was performed using
the DESeq2 R-package, and gene set analysis using the
PIANO version 1.18.1 R-package and using the Stouffer
method. The Reactome pathway database (50) was used for
gene annotation in the gene set analysis. The Benjamini–
Hochberg method (5% False Discovery Rate, FDR < 0.05)
was used for multiple testing correction of P values.

Statistics

Data are presented as means ± SE. Except from gene
expression data, Dunnett’s test one-factor linear model with
interaction was applied, with initial comparison of vehicle
control groups (DIO-NASH vs. Chow), followed by analysis of
PF-05231023 treatment response (PF-05231023 DIO-NASH
vs. Vehicle DIO-NASH). A P value of <0.05 was considered
statistically significant.

RESULTS

PF-05231023 Improves BodyWeight, Hepatomegaly,
and Biochemical Markers

PF-05231023 significantly decreased body weight (�8%,
P < 0.001 compared with baseline) after 12 wk of treatment
in DIO-NASH mice (Fig. 1A). In comparison, vehicle controls
gained 4% (chow) and 10% (DIO-NASH) body weight over
the study period. Compared with vehicle-dosed DIO-NASH
mice, PF-05231023 significantly increased caloric intake
over the treatment period (Fig. 1B). Hepatomegaly was
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significantly improved in PF-05231023-treated animals dis-
playing a 44% reduction (P < 0.001) in liver weight com-
pared with vehicle-dosed DIO-NASH controls (Fig. 1C). PF-
05231023 significantly reduced liver TC and TG, whereas
liver HP levels were unaffected (Fig. 1C). PF-05231023 also
significantly lowered ALT, AST, and TC plasma levels
(Fig. 1D).

PF-05231023 Improves Liver Histopathological
Hallmarks of NASH

Compared with baseline, NAS was consistently reduced
after PF-05231023 treatment, with 13 of 14 animals (93%)
demonstrating �1-point improvement, driven by reductions
in steatosis scores (P < 0.001) and lobular inflammation
scores (P < 0.05; Fig. 2, A and B). Eight of 14 animals (57%)
showed �2 point improvement in NAS (Fig. 2A). See Fig. 2C
for individual pre- to post-changes in histopathological
scores. PF-05231023 induced a significant 1-point improve-
ment of fibrosis stage in 4 of 14 mice (P < 0.05 vs. Vehicle

DIO-NASH, Fig. 2,A and C). In support of improved hallmarks
of NASH, PF-05231023 significantly reduced quantitative
markers of steatosis (% hepatocytes with lipid droplets, P <
0.001; % area of lipids, P < 0.001; Fig. 3, A and B) and inflam-
mation (number of inflammatory foci, P < 0.05; % area of
galectin-3, P < 0.001; Figs. 3C and 4A). Although having no
effect on quantitative markers of fibrosis (% area of PSR and
Col1a1, Figs. 3D and 4B), PF-05231023 significantly reduced
total liver PSR (P < 0.01) and Col1a1 (P < 0.01) content (Figs.
3E and 4E) as a result of decreased hepatomegaly. Also, PF-
05231023 significantly reduced %-area of a-SMA (P < 0.001;
Fig. 4C), a marker of hepatic stellate cell (HSC) activation.

PF-05231023 Improves Gene Expression Signatures
Associated with NASH

A principal component analysis (PCA) of the 500 most
variable genes showed clear group-wise clustering of regu-
lated genes. Notably, global gene expression signatures in
PF-05231023-treated DIO-NASH mice were clearly separated
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Figure 1. Effect of 12 wk of treatment with
vehicle or PF-05231023 on metabolic pa-
rameters, food intake, and biochemical
parameters in GAN DIO-NASH mice. A:
absolute body weight and percent change
relative to baseline (day 0). B: daily and cu-
mulative food intake. C: liver weight and
liver biochemistry for total cholesterol (TC),
triglycerides (TG), and hydroxyproline (HP).
D: plasma biochemistry for alanine amino-
transferase (ALT), aspartate aminotransferase
(AST), triglycerides (TG), and total cholesterol
(TC). n = 6–14 mice/group, �P < 0.05, ��P <
0.01, ���P < 0.001 (Dunnett’s test one-factor
linear model). DIO, diet-induced obese; GAN,
Gubra Amylin NASH; NASH, nonalcoholic
steatohepatitis.
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from vehicle-dosed controls demonstrating a large number
(n = 3,774) of differentially expressed genes (DEGs) (Fig. 5, A
and B). Of these, 2078 DEGs were shared by the chow control
group. Although Fgf21 gene expression was upregulated in ve-
hicle-dosed DIO-NASH, cognate receptors/coreceptors Klb
and Fgfr4 were downregulated (Fig. 5C). Treatment with PF-
05231023 treatment decreased Fgf21 expression and increased
expression of Klb, Fgfr2, and Fgfr4 compared with vehicle

DIO-NASH. PF-05231023 treatment resulted in significant reg-
ulation of NASH-associated candidate genes compared with
vehicle controls. These include upregulation of genes related
to glucose metabolism (Foxo1, Gys2, Insr, Irs1, Map2k2, Pck1,
and Pygl), bile acid metabolism (Abcb11, Slc10a2, Slc27a5, and
Slco1a4), lipid metabolism (Acaca, Acacb, Apoa1, Apoc2,
Hmgcr, Hmgcs2, Ldlr, Lrp1, Ppard, Scarb1, Thrb, and Vldlr)
and ER stress (Ern1) (Fig. 5D). Concurrently, PF-05231023
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Figure 2. PF-05231023 improves liver his-
topathological NAFLD Activity Score and
fibrosis stage in GAN DIO-NASH mice.
Histopathological scores were determined by
Gubra Histopathological Objective Scoring
Technique (GHOST) deep learning-based
image analysis. Summary of changes in pre-
to-post histopathological scores for (A )
NAFLD Activity Score (NAS) and fibrosis stage
(B) and steatosis, lobular inflammation and bal-
looning degeneration score. Vehicle-dosed
chow-fed mice served as normal controls. n =
6–14 mice/group, �P< 0.05, ���P< 0.001 for
�1 point improvement, ##P < 0.01, ###P <
0.001 for �2 point improvement (one-sided
Fisher’s exact test with Bonferroni correc-
tion). C: comparison of individual pre-to-
post liver biopsy histopathological scores
for NAS, fibrosis stage, steatosis score,
lobular inflammation score, hepatocyte
ballooning degeneration score in GAN
DIO-NASH mice administered vehicle or
PF-05231023 for 12 wk. DIO, diet-induced
obese; GAN, Gubra Amylin NASH; NASH,
nonalcoholic steatohepatitis.
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downregulated genes related to hepatocellular cell injury/
death (Aim2, Casp1, Nlrp3, and Ripk3), inflammation (Adgre1,
Ccl2, Ccr1, Ccr2, Ccr5, Cd14, Cd68, Cd86, Cysltr1, Il1b, Lgals3,
Tgfbr1, Tlr4, and Tnf), and ECM remodeling (Acta2, Col1a2,
Col3a1, Col5a2, Ctsk, Efemp1, Fbln5, Loxl2, Mcam, Mmp24,
Pdgfa, Serpinh1, Tgfb1, Timp1, and Vcan).

DISCUSSION

To date, therapeutic efficacy of FGF21 analogs in NASH
has been supported by preclinical studies in nonphysiologi-
cal rodent models. This study is the first to demonstrate that
a long-acting FGF21 analog improves NASH and fibrosis se-
verity in a translational diet-induced obese mouse model of
biopsy-confirmed NASH and fibrosis, suggesting clinical
utility of FGF21 analogs in the management of fibrosing
NASH.

The antisteatotic and anti-inflammatory effects of PF-
05231023 are consistent with previous leptin-deficient obese
mouse and nonhuman primate studies (46, 47) as well as in
line with clinical studies in diabetic and obese human sub-
jects (44, 45). Notably, the present study indicated that PF-
05231023 promoted a 1-point significant improvement in fi-
brosis stage. Clinical trials on FGF21 analog treatment in
patients with NASH remain few and with small sample sizes.
For example, in a recent phase 2a clinical trial evaluating an
FGF21 fusion protein, more than half of the subjects had a�1

improvement in fibrosis stage (17). The improvement of fi-
brosis stage shown by histopathological scoring in our study
is supported by reduced a-SMA levels, a reliable marker for
activation of HSCs, which are the principal collagen-produc-
ing cells in the liver (51). In contrast, quantitative assessment
of fibrosis by proportionate area of PSR and Col1a1 staining
showed no significant improvement, which could suggest
that PF-05231023 changes the distribution of collagen fibers
without altering overall collagen levels. Importantly, redis-
tribution of collagen (toward a lower score) is associated
with improved outcomes in NASH (52, 53).

Treatment with PF-05231023 in GAN DIO-NASH mice led
to a significant body weight reduction which is consistent
with previous reports on treatment with FGF21 analogs in
diet-induced and genetic mouse models of obesity (14). As in
the clinic, treatment interventions causing weight loss could
per se have beneficial effects on liver biochemical and histo-
logical endpoints in GAN DIO-NASH mice. Accordingly,
weight loss accompanied by improvements in liver parame-
ters has previously been reported in GAN DIO-NASH mice
on long-term treatment with various compounds in clinical
development for NASH (31, 41). It should be noted that
weight loss effects of PF-05231023 were contrasted by a mod-
est, however significant, increase in food intake. Previous
studies in rodent models of obesity have demonstrated
unchanged or slightly increased food intake when expressed
relative to body weight (14, 54, 55). Similar to our study in
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Figure 3. PF-05231023 improves quantita-
tive histology of steatosis, inflammation,
and fibrosis in GANDIO-NASHmice. A: per-
cent hepatocytes with lipid droplets. B: lipid
percent area. C: inflammatory foci density.
D: picrosirius red (PSR) percent area. E: PSR
total count. n = 6–14 mice/group, �P <
0.05, ��P < 0.01, ���P < 0.001 (Dunnett’s
test one- factor linear model). Bottom pan-
els: representative HE and PSR photomicro-
graphs used for GHOST evaluation. DIO,
diet-induced obese; GAN, Gubra Amylin
NASH; GHOST, Gubra Histopathological
Objective Scoring Technique; NASH, non-
alcoholic steatohepatitis; HE, hematoxylin-
eosin; PSR, picrosirius red.
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GAN DIO-NASHmice, weight loss has been reported accom-
panied by increased food intake in response to treatment
with long-acting FGF21 analogs in chow-fed mice (56, 57).
Although the central and peripheral mechanisms underlying
the inverse effects of long-acting FGF21 analogs on body
weight and food intake are unclear, species differences in
FGF21 responses should be considered when evaluating the
outcomes of PF-05231023 treatment. In contrast to rodent
studies, FGF21 analogs have been reported to suppress food
intake in nonhuman primates (44, 47), emphasizing impor-
tant species differences in the appetite regulatory effects of
FGF21 analogs. Inconsistent effects of FGF21 analogs have
been reported in clinical trials. While long-acting FGF21
analogs have demonstrated positive effects on insulin re-
sistance and lipid profiles in clinical trials, the effects on
body weight remain inconsistent and inconclusive (58).
Previous studies in mice have reported increased thermo-
genesis and increased energy expenditure in response to

FGF21 as potential drivers of weight loss (8, 11). It should be
noted that compensatory hyperphagia is associated with
FGF21-stimulated energy expenditure in mice (59–61).
Brown adipose tissue (BAT) activation and increased meta-
bolic rate as drivers of increased food intake have been
described in response to cold exposure in mice (59). It should
be emphasized that BAT-mediated increase in energy ex-
penditure has limited relevance in nonhuman primates and
humans (62). Although not specifically addressed in the cur-
rent study, it may be speculated that PF-05231023 could pro-
mote BAT activation and hyperphagia to compensate for
potentially increased energy expenditure in GAN DIO-NASH
mice. Of note, low-caloric dietary intervention robustly
reduces body weight and improves liver pathology but not fi-
brosis scores in GAN DIO-NASH mice (31). Considering that
PF-05231023 also improved fibrosis scores this raises the pos-
sibility that the antifibrotic effect of PF-05231023 is, at least
in part, independent of weight loss. Given the significant
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Figure 4. Improvements in quantitative his-
tological markers of steatosis, inflamma-
tion, and fibrosis in GAN DIO-NASH mice.
Quantitative histology for percent area of
galectin3 (A), percent area of collagen-1a1
(B), percent area of a-smooth muscle actin
(a-SMA; C), galectin3 total content (D), colla-
gen 1a1 total content (E ), a-SMA total con-
tent (F) n = 6–14 mice/group, ��P < 0.01,
���P < 0.001 (Dunnett’s test one-factor
linear model). Bottom panels: represen-
tative galectin-3, collagen 1a1 and a-SMA
photomicrographs. DIO, diet-induced obese;
GAN, Gubra Amylin NASH; NASH, nonalco-
holic steatohepatitis.
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species-dependent effects of FGF21, further preclinical stud-
ies in nonrodent species must be performed to confirm anti-
NASH efficacy of PF-05231023.

PF-05231023 treatment improved the liver lipid profile
(reduced liver TC and liver TG) and plasma liver injury
markers (ALT and AST), being in close agreement with data
from clinical studies (15, 17–19) and mouse studies on FGF21
analogs (14, 25). Of note, PF-05231023 was also able to lower
plasma TC in GAN DIO-NASH mice, which show hypercho-
lesterolemia due to high dietary cholesterol levels in the

GAN diet. Plasma TG in the PF-05231023 treatment group
was not significantly different from the Vehicle DIO-NASH
group nor Vehicle Chow. This is in contrast to previous
preclinical studies in mouse models of obesity and diabe-
tes (7, 55) and clinical trials (18, 19), describing reduced
plasma TG in response to FGF21 analog treatment. The ab-
sence of hypertriglyceridemia in this model is likely attrib-
uted to suppressed hepatic triglyceride secretion as a
result of the high dietary cholesterol intake, which has
been shown to downregulate hepatic cholesterol ester and
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expressed genes in treatment groups. C: hepatic mRNA expression of fibroblast growth factor 21 (Fgf21), b-klotho (Klb), FGF receptor 1 (Fgfr1), FGF recep-
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lipoprotein synthesis, which impedes TG secretion from
the liver (29, 63, 64).

To better understand the molecular pathways regulated
by PF-05231023 treatment, we evaluated the expression of a
panel of NASH-associated genes. Liver RNA sequencing
analysis revealed differential expression of key genes linked
to insulin signaling, glucose and lipid metabolism, inflam-
mation, hepatocellular injury/death, ER stress, and fibrosis.
These include the downregulation of prominent transcrip-
tional targets like the potent inflammatory and fibrogenic
cytokines and chemokines TGFb1, TNF, PDGF, IL1b, and
CCL2 (51, 65, 66). The improvement in fibrosis histology was
paralleled by the suppression of multiple genes involved in
hepatic stellate cell activation and ECM deposition, includ-
ing downregulation of profibrogenic genes such as Col1a1,
Acta2, Tgfbr1, and Timp1. Collectively, this suggests ongoing
tissue remodeling toward lowered collagen formation result-
ing in lowered fibrosis.

The molecular action by which FGF21 confers beneficial
metabolic effects remains a matter of debate. A study
employing a liver-specific knockout of the obligate core-
ceptor b-klotho described intact FGF21 sensitivity thus
indicating that direct FGF21 actions in the liver are dispen-
sable for the weight loss and glycemic effects (67). This,
however, is contrasted by other studies describing direct
hepatic actions of FGF21 through activation of FGFR2/
ERK1/2 (68) and FGFR3/KLB, which FGF21 binds to with a
lower affinity (69). We find reduced liver mRNA expression
of Fgf21, whereas receptors FgFr2, Fgfr4, and coreceptor
Klb were upregulated upon PF-05231023 treatment, con-
sistent with a recent study exploring native FGF21 in DIO
mice (70), suggesting a demand for increased hepatic FGF
signaling. Thus, although the primary receptor FGFR1 is
expressed at low levels in the mouse liver, direct hepatic
actions may be mediated through the stimulation of FGF
receptors 2, 3, and 4. The physiological and pharmacologi-
cal effects of FGF21 may also be mediated by central
actions. Indeed, central infusion of FGF21 reduces body
weight in rats (71). In mice, FGFR1 and KLB are coex-
pressed in several regions of the brain, including the hypo-
thalamus and dorsal vagal complex (72). We therefore
speculate that the hyperphagic response observed in the
present study could reflect a direct central action of PF-
05231023. In summary, the metabolic effects of FGF21 may
therefore be mediated by a combination of direct effects in
the liver, extrahepatic actions including CNS signaling
and fine tuning of interorgan metabolic cross talk.

The present study confirms and extends previous
reports on metabolic and hepatoprotective properties of
long-acting FGF21 analogs in rodents, nonhuman prima-
tes, and patients. To our knowledge, the present study is
the first to demonstrate that a long-acting FGF21 analog
improves fibrosis severity in a clinical translational mouse
model of NASH, supporting the development of long-act-
ing FGF21 analogs for the treatment of NASH and other
fibrotic diseases.
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