Therapeutic effect of semaglutide on pulmonary function and fibrosis in a bleomycin-induced and spirometry-confirmed mouse model of IPF

Authors

Asbjørn Graver Petersen¹, Denise Oró¹, Alba Manresa Arraut¹, Martin Rønn Madsen¹, Ulf Simonsen², and Michael Feigh¹

¹Gubra, Hørsholm, Denmark ²Aarhus University, Aarhus, Denmark

Corresponding author Michael Feigh - mfe@gubra.dk

BACKGROUND & AIM

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease.

Presently, there are not efficient therapeutic tools for the treatment of IPF. Glucagon-like peptide-1 receptor (GLP-1R) activation exerts antiinflammatory action and might play a role in pulmonary dysfunction and fibrotic development in IPF.

The aim of the present study was to study the therapeutic effects of the GLP-1R agonist, semaglutide, in a bleomycin-induced (BLEO) and spirometry-confirmed mouse model of IPF.

METHODS

10-12 weeks old C57BL/6JRj male mice received either a single intratracheal instillation of bleomycin (1.5 mg/kg, 50 μL) or saline (CTRL) at study day 1. To ensure correct bleomycin administration, only animals that showed a sustained \geq 5% weight loss at day 7 were randomized into treatment groups.

Pulmonary terminal end-points included spirometry (Flexivent), hydroxyproline (HP) content, and quantitative histomorphometry for markers of inflammation and fibrosis. Histopathological Aschroft scoring was performed using Gubra Histopathological Objective Scoring Technique (GHOST).

www.gubra.dk

Group	Animal model
1	CTRL
2	BLEO-IPF
3	BLEO-IPF

Vehicle

BLEO-IPF Semaglutide

Figure 1. Metabolic and biochemical parameters in BLEO-IPF mice. (A) Body weight change relative to baseline (day 1). (B) Terminal body weight (g). (C) Terminal lung weight (g). (D) Plasma surfactant protein D (SP-D). (E) Bronchoalveolar lavage (BALF) SP-D. (F) Terminal lung total HP. Mean ± SEM. **p<0.01 and ***p<0.001 compared to BLEO-IPF Vehicle (Dunnett's test one-factor linear model).

4 Improvement in histological markers of inflammation, fibrosis, and fibrogenesis 5 Improvement in histopathological Ashcroft scoring

Figure 3. Lung quantitative histological markers in BLEO-IPF mice.

Histomorphometric assessments were performed by conventional IHC image analysis (panels A-D). (A) Total galectin-3 content. (B) Total PSR content. (C) Total collagen-1a1 content. (D) Total alphasmooth muscle actin (α -SMA) content. Mean ± SEM. *p<0.05 and ***p<0.001 compared to BLEO-IPF Vehicle (Dunnett's test one-factor linear model). Bottom panels: Representative galectin-3, collagen 1a1 and α -SMA photomicrographs for BLEO-IPF semaglutide (scale bar, 100 µm).

3 CTRL

CTRL Vehicle

Figure 2. Pulmonary function testing in BLEO-IPF mice. (A) Forced vital capacity (FVC). (B) Forced expiratory volume in 0.1 seconds (FEV0.1). (C) Inspiratory capacity (IC). (D) Static compliance. (E) Pressure-volume curves. (F) Flow-volume curve. Mean ± SEM. **p<0.01 and ***p<0.001 compared to BLEO-IPF Vehicle (Dunnett's test one-factor linear model).

Figure 4. Semaglutide improves Ashcroft score. Histopathological Ashcroft score were determined by Gubra Histopathological Objective Scoring Technique (GHOST) deep learning-based image analysis. (A) Representative Masson's Trichome photomicrographs used for GHOST evaluation. Upper: CTRL Vehicle. Lower: BLEO-IPF Vehicle. (B) Ashcroft compared by GHOST assessment and manual scoring. (C) Ashcroft score by GHOST. Mean ± SEM. *p<0.05 and ***p<0.001 compared to BLEO-IPF Vehicle (Dunnett's test one-factor linear model).

No effect on parameters of pulmonary dysfunction

CONCLUSION

- + Semaglutide reduces terminal body weight, lung weight, and lung total hydroxyproline content.
- + Semaglutide reduces plasma SP-D levels.
- + Semaglutide provides no improvements in pulmonary functions tests.
- + Semaglutide reduces quantitative histological markers of fibrosis, inflammation and fibroblast cell activation.
- + Semaglutide improves fibrosis severity evaluated by histopathological Ashcroft score.
- + The BLEO-IPF mouse represent a translational preclinical model for exploring novel therapeutic agents for IPF.