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Abstract
AIM: To characterize development of diet-induced 
nonalcoholic steatohepatitis (NASH) by performing liver 
biopsy in wild-type and genetically obese mice.  

METHODS: Male wild-type C57BL/6J (C57) mice (DIO-
NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) 
were maintained on a diet high in trans-fat (40%), 
fructose (22%) and cholesterol (2%) for 26 and 12 wk, 
respectively. A normal chow diet served as control in 
C57 mice (lean chow) and ob/ob  mice (ob /ob  chow). 
After the diet-induction period, mice were liver biopsied 
and a blinded histological assessment of steatosis and 
fibrosis was conducted. Mice were then stratified into 
groups counterbalanced for steatosis score and fibrosis 
stage and continued on diet and to receive daily PO 
dosing of vehicle for 8 wk. Global gene expression in 
liver tissue was assessed by RNA sequencing and bioin-
formatics. Metabolic parameters, plasma liver enzymes 
and lipids (total cholesterol, triglycerides) as well as 
hepatic lipids and collagen content were measured by 
biochemical analysis. Non-alcoholic fatty liver disease 
activity score (NAS) (steatosis/inflammation/ballooning 
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degeneration) and fibrosis were scored. Steatosis and 
fibrosis were also quantified using percent fractional 
area.

RESULTS: Diet-induction for 26 and 12 wk in DIO-
NASH and ob /ob -NASH mice, respectively, elicited 
progressive metabolic perturbations characterized by 
increased adiposity, total cholesterol and elevated 
plasma liver enzymes. The diet also induced clear 
histological features of NASH including hepatosteatosis 
and fibrosis. Overall, the metabolic NASH phenotype 
was more pronounced in ob /ob -NASH vs  DIO-NASH 
mice. During the eight week repeated vehicle dosing 
period, the metabolic phenotype was sustained in 
DIO-NASH and ob /ob -NASH mice in conjunction with 
hepatomegaly and increased hepatic lipids and collagen 
accumulation. Histopathological scoring demonstrated 
significantly increased NAS of DIO-NASH mice (0 vs  
4.7 ± 0.4, P  < 0.001 compared to lean chow) and 
ob/ob-NASH mice (2.4 ± 0.3 vs  6.3 ± 0.2, P  < 0.001 
compared to ob /ob  chow), respectively. Furthermore, 
fibrosis stage was significantly elevated for DIO-NASH 
mice (0 vs  1.2 ± 0.2, P  < 0.05 compared to lean chow) 
and ob /ob  NASH (0.1 ± 0.1 vs  3.0 ± 0.2, P  < 0.001 
compared to ob/ob  chow). Notably, fibrosis stage was 
significantly (P  < 0.001) increased in ob/ob-NASH mice, 
when compared to DIO-NASH mice. 

CONCLUSION: These data introduce the obese diet-
induced DIO-NASH and ob /ob -NASH mouse models 
with biopsy-confirmed individual disease staging as 
a preclinical platform for evaluation of novel NASH 
therapeutics. 
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Core tip: We characterize the development and pro-
gression of diet-induced nonalcoholic steatohepatitis 
(NASH) in a wild-type and a genetically obese mouse 
model. We confirm that a diet high in trans-fat, fructose 
and cholesterol, develops key histological hallmarks of 
NASH (steatosis, inflammation, ballooning degeneration) 
in conjunction with fibrosis. Concomitantly, marked 
alterations in NASH associated gene expression path-
ways can be evaluated by RNAseq analysis. In addition, 
we describe that performing a baseline liver biopsy 
enables individual disease staging for subsequent 
stratified randomization of animals into study groups. 
Finally, we show these models′ utility for a chronic 
repeated dosing study to evaluate pharmacological 
intervention. 
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INTRODUCTION
It is generally accepted that along with increasing rates 
of obesity, type 2 diabetes and metabolic syndrome, the 
incidence and prevalence of patients with nonalcoholic 
fatty liver disease (NAFLD) continues to rise[1-4]. NAFLD 
is considered the hepatic manifestation of the meta-
bolic syndrome and covers a variety of pathologies 
ranging from simple hepatic steatosis (accumulation 
of triglycerides in hepatocytes) to nonalcoholic stea-
tohepatitis (NASH), characterized by inflammation, 
cellular ballooning and fibrosis in varying degrees[1-3]. 
The pathogenesis of NASH is described by the “two-
hit” hypothesis, the first hit being fat accumulation 
in hepatocytes, while the “second hit”, e.g., oxidative 
stress, apoptosis or mitochondrial dysfunction, causes 
development of inflammation and fibrosis[5]. 

There are currently no pharmacological agents 
specifically approved for the treatment of NASH and 
disease management is consequently focused on the 
correction of underlying risk factors (e.g., obesity, 
insulin resistance and dyslipidemia)[1,6]. A likely contri-
butor to the absence of therapeutics is the paucity of 
preclinical models resembling human NAFLD/NASH[6]. 
Historically, several animal models have been developed 
to represent the pathophysiology, morphological find-
ings, biochemical changes, and clinical features of 
human NAFLD/NASH. These models are usually divided 
into two main categories: The diet-induced models 
and the genetically modified models (transgenic or 
knockout models)[1]. Some diet-induced models are 
based on ad libitum feeding of diets enriched with 
various combinations of fat, cholesterol and sugars (e.g., 
fructose) thereby developing a metabolic phenotype 
reflected by adiposity and hepatosteatosis, albeit only 
presenting mild characteristics of NASH and typically 
lack of liver fibrosis[7,8]. Other dietary models involve 
feeding nutrient-deficient diets such as the methionine- 
and choline-deficient diet (MCD). Methionine and 
choline deficiency impairs liver β-oxidation and the pro-
duction of very-low density lipoproteins (VLDL) hereby 
generating a “second hit”[1], eliciting a more severe 
fibrotic NASH phenotype within hepatic tissue[8,9]. 
However, these models fail to recapitulate a clinically 
relevant overall metabolic phenotype as MCD animals 
demonstrate pronounced weight loss and perturbed 
energy- and glucose homeostasis[10]. Recently, a novel 
wild-type diet-induced obese fibrotic NASH mouse 
model was introduced by Trevaskis et al[11], based on 
the ALIOS diet model[12]. This model, generated by 
feeding an ad libitum diet high in trans-fat, fructose 
and cholesterol to wild-type C57Bl/6J mice [the Amylin 
liver NASH model (AMLN)], displayed key hallmarks of 
clinical NASH[11]. The AMLN mouse model was further 
optimized by demonstrating a liver biopsy technique for 
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assessing individual steatosis, inflammation, ballooning 
degeneration and fibrosis staging, prior to a putative 
study intervention[6]. Not only does the baseline liver 
biopsy reduce biological variability by excluding mice 
that fail to develop NASH prior to initiating therapy, but 
it also allows for within-subject comparisons over time, 
thereby increasing statistical power[6]. 

For the genetically modified NASH models, several 
studies have implicated a role of individual genes 
involved in the development of NASH using deletion 
or overexpression models[7,9]. For example, mice that 
overexpress the transcription factor sterol regulatory 
element-binding proteins (SREBPs), a feedback regu-
latory system controlling intracellular levels of cholesterol 
and free fatty acids develop a hepatic phenotype re-
sembling NASH. However, like MCD-fed mice, SREBP 
overexpression does not induce a metabolic profile 
consistent with obesity and insulin resistance[13]. In 
contrast, impairment of leptin signaling (e.g., db/db 
mice) results in obesity, insulin resistance and diabetes[14]. 
Leptin-deficient mice (Lepob/Lepob) are predisposed to 
develop steatohepatitis, however, when maintained on 
regular rodent chow they do not develop fibrosis[11]. In 
fact, it was previously postulated that Lepob/Lepob mice 
are incapable of developing hepatic fibrosis[9]. This notion 
was dispelled by the observation that Lepob/Lepob mice 
maintained on the AMLN diet for at least 12 wk do in fact 
develop the key hallmarks of NASH, including fibrosis[11]. 

The present study assessed key NASH diagnostic 
characteristics (e.g., steatosis score, inflammation, 
ballooning degeneration and fibrosis stage), metabolic 
endpoints and gene expression signatures in wild-type 
C57Bl/6J and Lepob/Lepob mice, fed the AMLN diet for a 
total of 34 and 20 wk, respectively, including an eight-
week repeated vehicle dosing period. In addition, we 
demonstrate how a baseline liver biopsy allows for 
individual disease staging and for stratified randomi-
zation into experimental groups with reduced biological 
variability and for a clear cut analysis of individual 
response to pharmacological intervention.  

MATERIALS AND METHODS
Animals and experimental set-up
All animal experiments were conformed to international 
accepted principles for the care and use of laboratory 
animals and were covered by a personal license for 
Jacob Jelsing (2013-15-2934-00784) issued by the 
Danish Committee for animal research.

Male C57Bl/6J (C57) and Lepob/Lepob (ob/ob) mice at 
5 wk of age were obtained from JanVier (JanVier labs, 
France), and group housed 5 animals pr. cage under 
a 12/12 h dark-light cycle. Room temperature was 
controlled to 22 ℃ ± 1 ℃, with 50% ± 10% humidity. 
Animals had ad libitum access to diet high in fat (40%, 
of these 18% trans-fat), 40% carbohydrates (20% 
fructose) and 2% cholesterol (D09100301, Research 
Diet, United States) previously described as the AMLN 
diet[6], or regular rodent chow (Altromin 1324, Brogaar-

den, Denmark), and tap water. Both strains had ad 
libitum access to either the AMLN diet (DIO-NASH, n = 
110; ob/ob NASH, n = 40) or chow (lean chow, n = 10; 
ob/ob chow, n = 10). After 26 (DIO-NASH) or 12 wk (ob/
ob-NASH) a liver biopsy was performed for histological 
assessment of individual fibrosis and steatosis staging 
at baseline. Following biopsy procedure animals were 
single housed. An 8-wk vehicle intervention period was 
conducted in a representative subset of DIO-NASH 
and ob/ob-NASH mice, and their respective chow 
controls. Vehicle dosing consisted of once daily per oral 
dose of carboxymethyl cellulose (C57 and ob/ob) and 
subcutaneous injection with PBS (C57). The rationale 
was to mimic repeated dosing administration and animal 
handling in combination with AMLN diet-maintenance. 
After a total of 34 and 20 wk on AMLN diet for DIO-
NASH and ob/ob-NASH mice, respectively, animals were 
euthanized and liver tissue collected for histological and 
biochemical analysis. Total animal numbers for each 
experiment is indicated in the figures and table.

Baseline liver biopsy after diet-induction
Mice were pretreated with enrofloxazin (Bayer, Germany) 
(5 mg/mL-1 mL/kg) one day before being biopsied. 
Prior to biopsy, mice were anesthetized with isoflurane 
(2%-3%) in 100% oxygen. A small abdominal incision in 
the midline was made and the left lateral lobe of the liver 
was exposed. A cone shaped wedge of liver tissue (50-100 
mg) was excised from the distal portion of the lobe 
fixed in 4% paraformaldehyde for histology. The biopsy 
procedure previously described by Clapper et al[6] 2013 
was refined using electrocoagulation of the cut surface of 
the liver by means of bipolar coagulation using ERBE VIO 
100C electrosurgical unit (ERBE, United States). The liver 
was returned to the abdominal cavity, abdominal wall 
was sutured and skin stapled. Carprofen (Pfizer, United 
States) (5 mg/mL-0.01 mL/10 g) and enrofloxazin (5 
mg/mL-1 mL/kg) were administered intraperitoneal at 
the time of surgery and at post-operation day one and 
two, to control postoperative pain relief and infection, 
respectively. 

Hepatic gene expression changes 
Gene expression changes were measured in a repre-
sentative subset of DIO-NASH mice and ob/ob-NASH. 
Liver tissue was harvested from the left lateral lobe and 
snap frozen in liquid nitrogen. Tissue sections (about 
50 mg) were homogenized in lysis buffer containing 
protease inhibitors and used for RNA extraction using 
NucleoSpin Plus RNA columns (Macherey-Nagel). The 
quantity of the RNA was analyzed using a Nano Drop 
2000 spectrophotometer (Thermo Scientific, United 
States). RNAseq libraries were prepared with the 
KAPA poly-A kit (Kapa Biosystems, United States) and 
sequenced on the NextSeq 500 (Illumina, United States) 
(single-end, 75 bp reads). Reads were aligned to the 
GRCm38 Ensembl Mus musculus genome using STAR 
v.2.4.0[15] and feature counts were obtained using HTseq 
v.0.6.1[16], both with default parameters. Differential 
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by acid hydrolysis of collagen (Cat no. MAK008, Sigma 
Aldrich).

Terminal hepatic triglyceride and total cholesterol 
content 
A liver piece (about 100 mg) was collected in FastPrep 
tubes and snap-frozen in liquid nitrogen. One milliliter 
5%NH-40/ddH2O solution (ab142227, Abcam) was 
added to the FastPrep tube. The tubes were homo-
genized in a FastPrep homogenizer and shaken for 2 
× 60 s. After homogenization the samples were slowly 
heated to 80 ℃-100 ℃ in a heating block for three 
minutes. Samples were allowed to return to room 
temperature prior to a second round of heating. Next, 
samples were centrifuged for two minutes at top 
speed using a microcentrifuge to remove any insoluble 
material. TG and TC content in liver homogenates are 
measured in single determinations using auto analyzer 
Cobas C-111 with commercial kit (Roche Diagnostics, 
Germany) according to manufacturer’s instructions.

Histology assessment and digital image analysis
Baseline liver biopsy and terminal samples were collected 
from the left lateral lobe (about 100 mg) and fixed 
overnight in 4% paraformaldehyde. Liver tissue was 
paraffin embedded and sectioned (3 µm thickness). 
To assess hepatic morphology and fibrosis, sections 
were stained with Hematoxylin and Eosin and Sirius 
Red, respectively, followed by analysis with Visiomorph 
software (Visiopharm, Denmark). Histological assess-
ment and scoring was performed by a pathologist blinded 
to the study. NAFLD activity score (NAS) (steatosis/
inflammation/ballooning degeneration) and fibrosis stage 
were performed using the clinical criteria outlined by 
Kleiner et al[20]. 

Statistical analysis 
All data were analyzed using GraphPad Prism 5.0. The 
results are presented as mean ± standard error of 
the mean. Statistical significance was evaluated using 
One-way analysis of variance with Turkey’s multiple 
comparison test, and for histological analysis using 
Kruskal-Wallis test with Dunn’s multiple comparison 
test. P < 0.05 was considered statistical significant.

RESULTS
Male C57 and ob/ob mice developed adiposity and 
elevated plasma metabolic parameters after AMLN diet-
induction
The overall study design is outlined in Figure 1A. 
Following a diet-induction period of 26 wk, C57 (DIO-
NASH) mice demonstrated increased body weight 
(adiposity), when compared to lean chow animals. In 
the already obese ob/ob strain there was no additional 
effect on body weight noted in ob/ob-NASH mice 
relative to chow controls. Whereas all mice experienced 
slight weight loss following the biopsy, they returned 

expression analysis was performed with edgeR[17] and 
genes with a P ≤ 0.05 after correction for multiple 
testing using the Benjamini and Hochberg method was 
regarded as significantly regulated. Pathway analysis 
of WikiPathways[18] was performed using the statistics 
module in PathVisio[19].

Body weight and body composition analysis
Body weight was intermittently monitored during 
the diet-induction period and once daily during the 
intervention period. Whole-body fat mass was analyzed 
at baseline (week -1) and week 8 of the intervention 
period by non-invasive EchoMRI scanning using Echo-
MRI-900 (EchoMRI, United States). During the scanning 
procedure the mice were placed in a restrainer for 
90-120 s.

Plasma biochemistry analysis 
After diet-induction, a baseline blood sample was 
collected from the submandibular vein in non-fasted 
conscious animals and blood sampling was repeated 
following the intervention period. Plasma levels of alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST), triglycerides (TG) and total cholesterol (TC) were 
measured using the auto analyzer Cobas C-111 (Roche 
Diagnostics, Germany). Plasma levels of insulin were 
measured in duplicates using an AlphaLisa kit (Perkin 
Elmer), according to the manufacturer’s instructions.

Oral glucose tolerance test
An oral glucose tolerance test (OGTT) was performed in 
week 4 of the intervention period. Animals were fasted 
for 4 h prior to OGTT. At t = 0 an oral glucose load [2 
g/kg glucose 200 mg/mL, (Fresenius Kabi, Sweden)] 
was administered via a gastrically placed tube. Blood 
samples for measuring blood glucose (BG) were 
collected from the tail vein at t = 0, 15, 30, 60 and 120 
min. Glucose area under the curve (AUC) calculations 
were determined as total AUC from the sampling period 
of 0 to 120 min.

Whole blood glucose analysis
Blood samples for BG analysis were collected into 10 
µL heparinized glass capillary tubes and immediately 
suspended in buffer [0.5 mL of glucose/lactate system 
solution (EKF-diagnostics, Germany)] and analyzed for 
glucose using a BIOSEN c-Line glucose meter (EKF-
diagnostics, Germany) according to the manufacturer’s 
instructions.

Terminal hepatic hydroxyproline content
Formalin fixed (50 mg) liver tissue was homogenized in 
500 µL water. Five hundred microliter concentrated HCl 
was added to the samples and hydrolyzed at 120 ℃ for 
three hours. Supernatants were transferred to a 96 well 
plate and wells were allowed to evaporate dry overnight. 
Total collagen content in the liver was measured by 
colorimetric determination of hydroxyproline residues 
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to a weight stable state within one week (Figure 1B). 
After diet-induction, DIO-NASH and ob/ob-NASH 
mice demonstrated a metabolic NAFLD phenotype, as 
reflected by elevated levels of plasma total cholesterol 
(TC) and liver enzymes ALT and AST, when compared 
to respective chow fed animals. Overall, the ob/ob-
NASH mice demonstrated an accelerated and more 
pronounced metabolic phenotype, when compared to 
DIO-NASH mice (Table 1).

Male C57 and ob/ob mice demonstrated biopsy-proven 
hepatic steatosis and fibrosis after AMLN diet-induction
Histological assessments of biopsied liver tissue 
revealed that lean chow animals did not develop hepatic 
steatosis or fibrosis over the 26-wk diet-induction (Figure 

1C and D). In contrast, DIO-NASH mice presented with 
high levels of steatosis (score 3) (Figure 1C) and fibrosis 
stage ranging from 1-3 (Figure 1D). The ob/ob chow 
phenotype displayed mild steatosis (score 1-2) and 
lack of or only mild fibrosis (stage 1) whereas all ob/ob-
NASH mice displayed a steatosis score of 3 (Figure 1C) 
and a fibrosis stage ranging from 1-4 (Figure 1D). 

Altered hepatic gene expression in male C57 and ob/ob 
mice after AMLN diet-induction
To characterize the effect of 26 wk diet-induction on 
global liver gene expression, the transcriptome of lean 
chow vs DIO-NASH mice were analyzed by RNAseq[21]. 
Principal component analysis identified a clear separation 
between the two groups along the first component, 
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indicating that the NASH diet markedly alters the overall 
gene expression profile (Figure 2A). We identified a total 
of 1378 differentially expressed genes, composed of 
510 repressed and 868 induced genes (Figure 2B). To 
explore biological processes affected, sets of significantly 
altered signaling pathways were extracted (Figure 2C 
and D). Many of these pathways are consistent with the 
observed NASH phenotype including focal adhesion, 
toll-like receptor (TLR) signaling pathway, matrix 
metalloproteinases and inflammatory response pathway. 
Consistent with the identification of focal adhesion as 
the top affected pathways multiple collagen subtypes 
showed increased expression (Figure 2E). 

Similar analyses were conducted on a subset of 
samples from ob/ob-NASH animals which confirmed 
the exaggerated expression levels of collagen types 
(Figure 2E). The pathway analysis also highlighted 
TLR signaling as one of the primary affected signaling 
processes, an observation supported by the increased 
expression of TLR4, which was recently demonstrated 
as an important pro-inflammatory mediator in the 
pathogenesis of NASH[22,23]. Notably, mRNA expression 
levels of a number of other TLR subtypes (TLR7, TLR8, 
TLR12 and TLR13) were upregulated to greater extent 
than TLR4 (Figure 2F). Furthermore, a large collection 
of pro-inflammatory factors ranging from chemokines, 
such as monocyte chemoattractant protein-1 (MCP-1), 
to chemokine receptors, such as C-C motif chemokine 

receptor-2 (Ccr2) and macrophage markers (i.e., CD68, 
CD86, F4-80 and MAC-2) (Figure 2G) were significantly 
induced. Finally, in line with observed hepatosteatosis, 
expression levels of genes involved in triglyceride 
biosynthesis were significantly increased in C57 and 
ob/ob animals exposed to the AMLN diet. Conversely, 
cholesterol biosynthesis expression was significantly 
decreased in the DIO-NASH and ob/ob-NASH mice 
(Figure 2H).  

Male C57 and ob/ob mice sustained adiposity and 
elevated plasma metabolic parameters after AMLN diet-
maintenance and repeated dosing intervention period 
During the intervention period with diet-maintenance 
and repeated vehicle dosing for a total of 8 wk, DIO-
NASH mice progressively gained body weight (adiposity), 
when compared to lean chow animals. Leptin-deficient 
mice also gained fat mass during the 8-wk intervention 
period (Figure 1E and F). Fat gain was somewhat less 
in the ob/ob-NASH mice, however, these mice began 
the study with a higher % adiposity (37%, n = 10) 
relative to DIO-NASH mice (14%, n = 12). At study 
end (termination), DIO-NASH and ob/ob-NASH animals 
sustained the elevated levels of plasma liver enzymes 
and hypercholesterolemia, when compared to respective 
chow-fed mice (Table 1). In contrast, terminal plasma 
TG levels were unchanged in DIO-NASH mice, and 
were significantly decreased for ob/ob-NASH animals, 

Table 1  Effect of Amylin liver nonalcoholic steatohepatitis model diet on metabolic parameters, non-alcoholic fatty liver disease 
activity score/fibrosis stage, body weight/composition and liver weight

Lean chow n  = 9 DIO-NASH n  = 12 ob/ob  chow n  = 8 ob/ob  NASH n  = 10

Baseline plasma ALT (U/L) 30.7 ± 0.8 133.6 ± 16.3   207.0 ± 58.7   577.4 ± 43.4d,f

Terminal plasma ALT (U/L) 31.5 ± 2.9 126.1 ± 19.8   249.7 ± 47.4    670.0 ± 59.0d,f

Baseline plasma AST (U/L) 46.5 ± 2.2  134.8 ± 11.6b   174.2 ± 41.1   436.7 ± 36.8d,f

Terminal plasma AST (U/L) 139.0 ± 28.2 213.8 ± 31.6   338.9 ± 87.7   552.6 ± 49.5c,f

Baseline plasma TC (mmol/L)   2.1 ± 0.1    6.8 ± 0.3b     3.5 ± 0.2   10.4 ± 0.9d,f

Terminal plasma TC (mmol/L)   2.3 ± 0.1    6.7 ± 0.4b     4.4 ± 0.2   10.8 ± 0.6d,f

Baseline plasma TG (mmol/L)   0.7 ± 0.1   0.9 ± 0.1     1.1 ± 0.2  0.8 ± 0.1
Terminal plasma TG (mmol/L)   0.8 ± 0.1   1.0 ± 0.1     1.3 ± 0.1   0.7 ± 0.1d

OGTT-AUC 1104 ± 49.7  1217 ± 39.9      1612 ± 173.4 1319 ± 61.4
Fasting blood glucose (mmol/L)   7.3 ± 0.3   7.6 ± 0.2     8.1 ± 0.3  7.6 ± 0.3
Plasma insulin (pmol/L) 30.6 ± 6.7   97.4 ± 18.3 1189 ± 94  567.3 ± 123d,e

Baseline steatosis score (0-3) 0    2.7 ± 0.3b     1.8 ± 0.2  2.7 ± 0.3
Baseline fibrosis stage (0-4) 0   1.8 ± 0.2   0.25 ± 0.2    2.7 ± 0.3d,f

Terminal NAFLD activity score (0-8) 0    4.7 ± 0.4b     2.4 ± 0.3   6.3 ± 0.2d

Terminal steatosis score (0-3) 0    2.8 ± 0.1b     2.1 ± 0.2  2.1 ± 0.2
Terminal inflammation score (0-3) 0    1.4 ± 0.2b     0.3 ± 0.2   2.4 ± 0.2d

Terminal ballooning degeneration score (0-2) 0   0.4 ± 0.1 0   0.9 ± 0.1d

Terminal fibrosis stage (0-4) 0    1.2 ± 0.2a     0.1 ± 0.1     3.0 ± 0.2d,e

Terminal steatosis (% area)   5.4 ± 0.5  33.9 ± 2.6b   29.5 ± 2.3 41.2 ± 1.0c

Terminal fibrosis (% area)   0.3 ± 0.1   1.1 ± 0.2     1.2 ± 0.2     4.9 ± 0.7d,e

Terminal BW (g) 28.0 ± 0.3 39.1 ± 1.1      59 ± 1.1 54.8 ± 0.8e

Terminal lean tissue mass (g) 14.6 ± 0.8  18.8 ± 0.5b   19.9 ± 0.9 17.3 ± 0.4c

Terminal lean tissue mass (% of BW) 49.6 ± 2.6 47.7 ± 1.5   33.6 ± 1.1 31.9 ± 0.6f

Terminal fat tissue mass (g)   1.5 ± 0.1    8.1 ± 0.7b   25.1 ± 0.7  22.5 ± 0.5c,f

Terminal fat tissue mass (% of BW)   5.1 ± 0.5  20.0 ± 1.3b   42.3 ± 0.8 41.5 ± 0.5f

Liver weight (g)   1.1 ± 0.1    2.5 ± 0.3b     2.9 ± 0.2     5.4 ± 0.2d,f

Liver weight (% of BW)   3.9 ± 0.3    6.3 ± 0.6b     4.9 ± 0.3     9.9 ± 0.3d,f

aP < 0.05 vs lean chow, bP < 0.01 vs lean chow, cP < 0.05 vs ob/ob chow, dP < 0.01 vs ob/ob chow, eP < 0.05 vs DIO-NASH and fP < 0.01 vs DIO-NASH. NASH:  
Nonalcoholic steatohepatitis; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BW: Body weight; OGTT: Oral glucose tolerance test; AUC: 
Area under the curve.
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when compared to chow (Table 1). Collectively, terminal 
plasma levels of ALT, AST and TC were markedly 
elevated in ob/ob-NASH, when compared to DIO-NASH 
mice (Table 1).

An OGTT was performed four weeks into the inter-
vention period. Fasting blood glucose and OGTT AUC 
for blood glucose were unchanged in DIO-NASH and 
ob/ob-NASH mice, as compared to respective chow 
fed animals (Table 1). Diet effects on glycemic status 
are supported by the elevation in plasma insulin levels 
of about 3-fold (NS) in DIO-NASH when compared to 
lean chow, whereas ob/ob-NASH showed a surprisingly 
decrease in plasma insulin levels at study end when 

compared to ob/ob chow animals (Table 1). 

Male C57 and ob/ob mice demonstrated hepatomegaly 
with increased hepatic lipids and collagen content 
after AMLN diet-maintenance and repeated dosing 
intervention period 
At study end, terminal liver weight was significantly 
increased in DIO-NASH and ob/ob-NASH mice, when 
compared to respective chow animals (Figure 3A). 
Additionally, liver weight of ob/ob-NASH was significantly 
higher than liver weight of DIO-NASH animals (Figure 
3A). Both strains demonstrated increased deposition of 
liver TG and TC when compared to respective chow mice 
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(Figure 3B and C). Furthermore, liver TG and TC content 
were significantly increased in ob/ob-NASH mice, when 
compared to DIO-NASH animals (Figure 3B and C). 
Notably, DIO-NASH and ob/ob-NASH mice showed 
elevated levels of liver hydroxyproline (collagen) content, 
when compared to chow controls (Figure 3D). Overall, 
levels of liver hydroxyproline content were higher in 
ob/ob-NASH animals relative to DIO-NASH mice (Figure 
3D). 

Histopathological scoring of liver steatosis, 
inflammation and ballooning degeneration after AMLN 
diet-maintenance and repeated dosing intervention 
period in male C57 and ob/ob mice
Blinded histological assessment of NAS was performed 
on hematoxylin and eosin stained terminal hepatic 
tissue (Table 1). No evidence of steatosis, inflammation 
and ballooning degeneration was observed in lean chow 
controls (Figure 4A). In ob/ob chow mice steatosis was 
categorized as pronounced microvesicular with mild 
microvesicular steatosis (Figure 4B). Despite increased 
steatosis when maintained on chow diet, neither bal-
looning degeneration nor inflammation was observed in 
ob/ob chow animals (Figure 4B). In contrast, DIO-NASH 
mice developed micro- and macro-vesicular steatosis, 
with inflammation and ballooning degeneration (Figure 
4C). Similarly, ob/ob-NASH mice developed micro- 
and macro-vesicular steatosis, and more pronounced 
inflammation and ballooning degeneration (Figure 4D). 
Thus, the NASH phenotypes of both strains of mice 
were clearly reflected in significantly increased NAS, 

when compared to respective chow animals (Figure 4E). 
Finally, image analysis confirmed hepatic steatosis in 
DIO-NASH and ob/ob-NASH mice (Figure 4F). 

Histopathological scoring of liver fibrosis after AMLN 
diet-maintenance and repeated dosing intervention 
period in male C57 and ob/ob mice
Fibrosis stage was assessed by blinded histological 
evaluation using Sirius red staining of terminal liver 
tissue (Table 1). Hepatic fibrosis was not observed in 
lean chow or ob/ob chow mice (Figure 5A and B). In 
contrast, fibrosis was observed in DIO-NASH mice (Figure 
5C) and to a greater extent in ob/ob-NASH animals who 
progressed to bridging fibrosis (Figure 5D). Fibrosis was 
most evident at tissue margins, but also penetrated into 
the tissue (Figure 5A-D). The fibrotic phenotypes of the 
DIO-NASH and ob/ob-NASH mice were mirrored by an 
increase in fibrosis stage compared to respective chow 
animals (Figure 5E). Increases in fibrosis stage were 
reflected by our image analyses showing an increase in 
% fractional area of Sirius Red (Figure 5F). Notably, the 
ob/ob-NASH animals were more fibrotic than DIO-NASH 
mice (Figure 5E and F). 

DISCUSSION
In the present study two obese mouse models of diet-
induced NASH were evaluated; the C57 DIO-NASH 
and the ob/ob-NASH. We confirm that a diet high in 
trans-fat, fructose and cholesterol produces a metabolic 
NASH phenotype with elevated plasma liver enzymes, 
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hepatomegaly and recapitulates multiple clinical fe-
atures including key hallmarks of NASH (steatosis, 
inflammation, ballooning degeneration and fibrosis). 
These changes were associated with marked alterations 
in associated gene expression pathways implicated in 
NASH and development of fibrosis. The mouse models 
are also suitable for pharmacological intervention 
studies, with a paired baseline liver biopsy procedure 
enabling individual disease stage before a repeated 
dosing period as is customary in NASH preclinical 
studies. Whereas all mice experienced slight weight loss 
following the biopsy, they returned to a weight stable 
state within one week moreover DIO-NASH and ob/
ob-NASH sustained hepatomegaly, hepatic steatosis, 
inflammation, ballooning degeneration and fibrosis follow-
ing repeated dosing intervention for a total of 8 wk.

DIO-NASH and ob/ob-NASH mice developed key 
hallmarks of fibrotic NASH including marked hepato-
steatosis with evident inflammation and ballooning 
degeneration, as assessed by a clinical-derived histolo-
gical NAS and fibrosis stage classification system 
developed by Kleiner et al[20]. This is in line with recent 
findings by Clapper et al[6] and Honda et al[24] in C57 
AMLN mice, thus supporting the wild-type C57 DIO-
NASH mouse as a suitable preclinical model for diet-
induced obesity and NASH. In addition, the genetically 
obese ob/ob mouse model was also recently demon-
strated to exhibit fibrotic NASH when fed AMLN diet[11,25].
In the leptin-deficient model superimposing the NASH 
diet high in trans-fat, fructose and cholesterol repre-
sents a “second hit” in development of preclinical 
NASH. The present study demonstrates that the NAS 
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and fibrosis stage can also be integrated in analyses of 
the ob/ob-NASH mouse - and in conjunction with the 
excessive accumulation of hepatic lipids and collagen 
content - introduces an accelerated and aggressive diet-
induced NASH phenotype relative to the C57 DIO-NASH 
model.

In accordance with histological observations of 
hepatic inflammation, mRNA analyses revealed within 
inflammatory pathways that toll-like receptors and 
downstream pro-inflammatory effectors (e.g., Il1b, 
MCP-1) were markedly upregulated after the diet-
induction period in DIO-NASH and ob/ob-NASH. In line 
with previous findings in diet-induced NASH mouse 
models[26], we observed increased expression of TLR4, a 
key receptor in fibrogenic development as demonstrated 
in high-fat diet-induced TLR4 knockout[22], and bile duct 

ligation models[23]. In addition, TLR4 KO in ob/ob mice 
was protective against NASH development as evinced 
by reduced NAS compared to regular ob/ob mice[27]. 
Interestingly, we observed higher expression levels of 
four additional TLRs: TLR7, TLR8, TLR12 and TLR13, 
which could be of relevance in future elucidation of the 
pathogenesis of NASH and for pharmacological inter-
vention.

CCR2 mRNA levels were also increased in ob/ob-
NASH mice. CCR2 has been implicated in the develop-
ment of liver fibrosis, with Ccr2-/- mice showing reduced 
fibrosis following bile duct ligation or CCl4 exposure[28]. 
CCR2 is a functional receptor for MCP-1, and is involved 
in the migration of macrophages during obesity[29]. 
Together, the impact on TLR signaling and macrophage 
abundance indicates an accelerated inflammatory NASH 

Figure 5  Histological assessment of fibrosis stage and liver collagen at study end. Representative sirius red stained sections from; lean chow (A), ob/ob chow 
(B), DIO-NASH (C) and ob/ob NASH (D) mouse model. Liver fibrosis stage performed by a blinded pathologist at study end (E), and quantitatively image analysis 
of collagen (% area) from sirius red staining using visiomorph software (F). Fibrous band formation indicated by black arrows. aP < 0.05, bP < 0.01, dP < 0.001. The 
results are presented as mean ± SEM. Lean chow (n = 9), DIO-NASH (n = 12), ob/ob chow (n = 8), ob/ob NASH (n = 10). NASH: Nonalcoholic steatohepatitis; SEM: 
Standard error of the mean.
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phenotype in the ob/ob-genotype. Furthermore, markers 
of macrophage infiltration CD68 and F4-80, were up-
regulated in DIO-NASH and to a larger extent in ob/ob-
NASH mice, hereby corroborating the histological finding 
of increased inflammation in the two models. 

In accordance with histological observations of 
hepatic fibrosis, our mRNA analyses also revealed in-
creased expression of fibrillary collagens. Of particular 
interest is the increased diet- and strain-induced regu-
lation of type Ⅰ, Ⅲ and type Ⅳ collagen, as these are 
known to be abundantly increased in liver fibrosis[30,31]. 
Interestingly, we also report altered expression of 
type Ⅰ collagen α1 and α2 chain, type Ⅲ collagen α1, as 
well as type XIV collagen α1, which could be of relevance 
in development/progression from NASH to fibrosis and 
future design of anti-fibrotic agents.

Pathway analyses also shed light on the trans-
criptional regulation of the main enzymes involved in 
triglyceride and cholesterol biosynthesis induced by 
the AMLN diet in DIO-NASH and ob/ob-NASH mice. 
Expression of these enzymes are all regulated by 
SREBP transcription factors, with SREBP1 regulating 
triglyceride synthesis and SREBP2 regulating cholesterol 
synthesis[32]. We report significantly increased levels 
of total cholesterol in plasma and livers of DIO-NASH 
and ob/ob-NASH mice compared to respective chow 
groups. Interestingly, the gene markers for biosynthesis 
of cholesterol in the liver appear to be dramatically 
reduced for DIO-NASH and ob/ob-NASH, presumably 
to compensate for the intake of high level of cholesterol 
in the diet. However, to our surprise the same was not 
observed for the triglyceride synthesis as the main 
lipid enzymes showed increased expression (data 
not shown), albeit plasma levels of triglycerides were 
significantly decreased for ob/ob-NASH mice compared 
to ob/ob chow. This could be caused by impairment in 
VLDL secretion from the liver[6], as relative triglyceride 
content in the liver was significantly increased in livers 
of ob/ob-NASH compared to levels in livers from ob/ob 
chow. Dysfunctional VLDL synthesis and secretion has 
been suggested to be a key factor in the progression 
of simple steatosis to NASH[33]. The mechanism(s) of 
action involved in the perturbed lipid metabolism awaits 
further investigations.    

In conclusion, the diet-induced DIO-NASH and ob/
ob-NASH mouse models demonstrate metabolic and 
histological key hallmarks of NASH. A clinically-derived 
histopathological scoring system can be applied in the 
DIO-NASH and ob/ob-NASH mouse models, thereby 
introducing a preclinical platform for evaluation of novel 
NASH therapeutics. Finally, a liver biopsy procedure 
at baseline allows for evaluation of individual disease 
staging prior to pharmacological intervention hereby 
reducing biological variability.   

COMMENTS
Background
Nonalcoholic steatohepatitis (NASH) is an emerging liver disease with 

increasing prevalence. There are currently no pharmacological agents 
specifically approved for the treatment of NASH and disease management 
is consequently focused on the correction of underlying risk factors such as 
obesity, insulin resistance and dyslipidemia.  

Research frontiers
The lack of approved therapeutics has to some degree been attributed 
to the failure of animal models to faithfully represent the clinical condition 
(e.g., disease progression and metabolic background) and the way NASH is 
assessed clinically (paired biopsies and validated histological methods). Hence, 
novel diet-induced NASH models that develop the appropriate metabolic 
phenotype with improved liver sampling methods are highly desirable as a 
preclinical platform for exploring novel NASH treatments.

Innovations and breakthroughs
The authors describe and characterize a wild-type C57 and a genetically (ob/
ob) obese diet-induced mouse model of NASH and confirm previous findings 
demonstrating key hallmarks of metabolic deregulation and fibrotic NASH 
using biochemical, histological and gene expression endpoints. Notably, a 
liver biopsy-confirmed and clinically-derived histological NASH scoring and 
fibrosis staging are being performed in ob/ob mice, which the authors are the 
first to report. Finally, the utility of the diet-induced NASH mouse models for 
pharmacological investigations is being demonstrated by performing a chronic 
intervention period with repeated dosing following a baseline liver biopsy 
procedure. 

Applications
A baseline liver biopsy performed after diet-induction allows for individual 
disease staging for stratification and randomization into study groups and for 
evaluation of novel NASH therapeutics.

Peer-review
The results of this study demonstrated a useful animal model for evaluation 
the disease progression and treatment of NASH. The data were appropriately 
presented and interpreted. The manuscript was well prepared.  
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